
1

Lecture 21: BPred, OOO, Memory Hierarchy

• Today’s topics:

 Branch Predictors
 Out-of-order execution
 Cache intro

2

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor

3

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

4

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

5

2-Bit Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
… sound familiar?

• If (counter >= 2), predict taken, else predict not taken

• The counter attempts to capture the common case for
each branch

Indexing functions
Multiple branch predictors
History, trade-offs

6

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
number of stages

• Instructions can now complete out of order – must make sure
that writes to a register happen in the correct order

7

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

8

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ

9

Example Code

Completion times with in-order with ooo

ADD R1, R2, R3 5 5
ADD R4, R1, R2 6 6
LW R5, 8(R4) 7 7
ADD R7, R6, R5 9 9
ADD R8, R7, R5 10 10
LW R9, 16(R4) 11 7
ADD R10, R6, R9 13 9
ADD R11, R10, R9 14 10

10

Cache Hierarchies

• Data and instructions are stored on DRAM chips – DRAM
is a technology that has high bit density, but relatively poor
latency – an access to data in memory can take as many
as 300 cycles today!

• Hence, some data is stored on the processor in a structure
called the cache – caches employ SRAM technology, which
is faster, but has lower bit density

• Internet browsers also cache web pages – same concept

11

Memory Hierarchy

• As you go further, capacity and latency increase

Registers
1KB

1 cycle

L1 data or
instruction

Cache
32KB

2 cycles

L2 cache
2MB

15 cycles

Memory
16GB

300 cycles
Disk
1 TB

10M cycles

12

Locality

• Why do caches work?
 Temporal locality: if you used some data recently, you

will likely use it again
 Spatial locality: if you used some data recently, you

will likely access its neighbors

• No hierarchy: average access time for data = 300 cycles

• 32KB 1-cycle L1 cache that has a hit rate of 95%:
average access time = 0.95 x 1 + 0.05 x (301)

= 16 cycles

