Lecture 21: BPred, OO0, Memory Hierarchy

hﬁoﬁs o J~(_)
e Today’s topics: po | ™®
y's1top 0{\ l\ Coﬂ)rrbl HQ/Z/M
= Branch Predictorst! | ' @ Do poth cpl=12

= Qut-of-order execution

- Cacheintro | - (2) Predact Pc+4 cpi=l06
R —_ ou'{' ®) \ ‘€ u:)(
X0 Aac s | b @g('MMSHS

,19_5———,& pot & ﬁ:@ﬁ(— k(,e,f ‘FNC S\P\T}LL“L_/
00O 0 ~ Orus (s e~ Conp
A ‘) CPl = D 12
| o | =) G) > bromh prelichrs
|| ?O Il cpr= 1008

(SU\/V\) 1

G 1
L
Pipeline with Branch Predictor *@ et yechor

Branch
Predictor

SR {W

BN S \(SD\L\F@ Seen

SIGN] . Look of Bemcdh P

Bimodal Pr@

CDMM‘V\
(a5€
Co Lok S eaf 37
’/7 (§'L3v~a)‘v\ff, / s e "*\> Tak QZ:‘;/ \
F) ’ B ()(— -
fc+ ond 7 > 00 <
PAEA l 6 *-)l:l‘z_ Z\P
‘%\j 14 bit | ol e
- its
ve= 329 ~ , Tak')lle:))fT 50
Branch PC > 16K entrie‘sr__fcké;
) 5971 N—7|__of 2-bit T CnTTS
\(/1’0 Y\.\— e M"\O"{/ “ 2527 saturating |——
J’w& Y\u/J?C/ counters
|) oC _ f .
5 o e o 14 b sgj'f"‘)“"k
@ (Ub rwebes (o- 16385) (4385 L
/ o —
6 x 2" ety

Lock , GhLal Towrnamed- b st R pbsyn
Birmodat Predictor ju b

NT L' copbo dF PO Hisb (mZE/ A~ OR

: —_— %‘Lgr\. M lDQIL@(
C___
QL sk 14bits sio)wlvm
Table of
. Branch PC > . re\’r:pQ
of To™ P 1T/l 2.3t
saturating
OVT ‘ : K&MM&‘/ (M m / counters
14 bfanchao Aod NT /0
[0 071 (o (o2
[0l (o1 (o (ol (O] 4

2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
... sound familiar?

e |f (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for
each branch

Indexing functions
Multiple branch predictors
History, trade-offs

Multicycle Instructions

Com MAS I
roCc s
f %M/Fk/ > R?nmmmmu&mnmme

* Multiple parallel pipelines — each pipeline can have a different gql,

v 1 2|
(=
Buffer ADD 2 ¢

number of stages &
e |nstructions can now complete out of order — must make sure $ -
that writes to a register happen in the correct order

To3

e—il

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

l

R1 € R1+R2
R2 €< R1+R3

R3 €< R1+R2
R1 € R3+R2

Instr Fetch Queue

Reorder Buffer (ROB)

Instr 1 T1
Instr 2 T2
Instr 3 T3
Instr 4 T4
Instr 5 15
Instr6| T6

~

Register File
R1-R32

BEQZR2 |,

Decode &
Rename

~~

Tl € R1+R2
T2 € T1+R3
BEQZ T2
T4 & T14T2
T5 € T4+T2

Issue Queue (1Q)

N

ALU

ALU

ALU

!

Results written to
ROB and tags
broadcast to IQ

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

l

R1 € R1+R2
R2 €< R1+R3

R3 €< R1+R2
R1 € R3+R2

Instr Fetch Queue

Reorder Buffer (ROB)

Instr 1 T1
Instr 2 T2
Instr 3 T3
Instr 4 T4
Instr 5 15
Instr6| T6

~

Register File
R1-R32

BEQZR2 |,

Decode &
Rename

~~

Tl € R1+R2
T2 € T1+R3
BEQZ T2
T4 & T14T2
T5 € T4+T2

Issue Queue (1Q)

N

ALU

ALU

ALU

!

Results written to
ROB and tags
broadcast to IQ

Example Code

Completion times with in-order with ooo
ADD R1, R2, R3 5 5
ADD R4, R1, R2 6 6
LW R5, 8(R4) 7 7
ADD R7, R6, R5 9 9
ADD RS, R7, R5 10 10
LW R9, 16(R4) 11 7
ADD R10, R6, R9 13 9

ADD R11, R10,R9 14 10

Cache Hierarchies

e Data and instructions are stored on DRAM chips — DRAM
is a technology that has high bit density, but relatively poor
latency — an access to data in memory can take as many
as 300 cycles today!

e Hence, some data is stored on the processor in a structure
called the cache — caches employ SRAM technology, which

is faster, but has lower bit density

* Internet browsers also cache web pages — same concept

10

Memory Hierarchy

e As you go further, capacity and latency increase

11

Locality

e Why do caches work?
= Temporal locality: if you used some data recently, you

will like
= Spatial
will like

y use it again
ocality: if you used some data recently, you
y access its neighbors

* No hierarchy: average access time for data = 300 cycles

e 32KB 1-cycle L1 cache that has a hit rate of 95%:

average access time =0.95x 1+ 0.05 x (301)
=16 cycles

12

