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2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
... sound familiar?

e |f (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for
each branch

Indexing functions
Multiple branch predictors
History, trade-offs




Multicycle Instructions
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An Out-of-Order Processor Implementation

Branch prediction
and instr fetch
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Example Code

Completion times with in-order  with ooo
ADD R1, R2, R3 5 5
ADD R4, R1, R2 6 6
LW R5, 8(R4) 7 7
ADD R7, R6, R5 9 9
ADD RS, R7, R5 10 10
LW R9, 16(R4) 11 7
ADD R10, R6, R9 13 9

ADD R11, R10,R9 14 10



Cache Hierarchies

e Data and instructions are stored on DRAM chips — DRAM
is a technology that has high bit density, but relatively poor
latency — an access to data in memory can take as many
as 300 cycles today!

e Hence, some data is stored on the processor in a structure
called the cache — caches employ SRAM technology, which

is faster, but has lower bit density

* Internet browsers also cache web pages — same concept
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Memory Hierarchy

e As you go further, capacity and latency increase
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Locality

e Why do caches work?
= Temporal locality: if you used some data recently, you

will like
= Spatial
will like

y use it again
ocality: if you used some data recently, you
y access its neighbors

* No hierarchy: average access time for data = 300 cycles

e 32KB 1-cycle L1 cache that has a hit rate of 95%:

average access time =0.95x 1+ 0.05 x (301)
=16 cycles
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