Lecture 20: Branches, OO0
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e Today’s topics:

C " Branch prediction
"Out-of-order execution

= (Also see class notes oni pipelining, hazards, etccs}) Rj
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A 7 or 9 stage pipeline, RR and RW take an entire stage
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Problem 4 — Vl'thﬂp

A 7 or 9 stage pipeline, RR and RW take an entire stage
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IF IF Dec || Dec || RR ALU || RW
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Problem 4

Without bypassing: 4 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
|F: IF :DE:DE:DE:DE: DE :DE:RR:AL:RW

With bypassing: 2 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE: RR :AL:RW

lw S1, 8(52)

|F |F Dec || Dec || RR ALU || RW
add 54,51, S3

ALU || DM || DM || RW




Pipelining Example (Recap) 1202 2 LA

Z’ g Ciowz)
* Unpipelined design: the entire circuit takes 10ns to fmlsh
Cycle time = 10ns; Clock speed 1/10ns = 100 MHz

CP| = 1(assuws) I oM = X | 8

Throughput in instructions per second = o
H#cycles in a second x instructions-per-cycle =

100 M x 1 =100 M instrs per second = 0.1 BIPS (billion instrs per sec)
—— = e g

e 5-stage pipeline: under ideal conditions, each stage takes 2ns
Cycle time = 2ns; Clock speed =1/2ns =500 MHz (5x higher)
mg to assume no stalls)

’_\>§ . .
Throughput = # cycles in a secondX instrs-per-cycle
= 500{\!\/I-x 1 =500 MIPS = 0.5 BIPS
Under ideal conditions, a 5-stage pipeline gives a 5x speedup.
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. Slmple techniques to handle control hazard staIIs
o\Pl » for every branch, introduce a stall cycle (note: every
1. 6tinstructionis a branch!) >Do W
» assume the branch is not taken and start fetching the
W&y next instruction — if the branch is taken, need hardware
:L/ to cancel the effect of the wrong-path instruction &L
» fetch the next instruction (branch delay slot) and Py,

.01 % execute it anyway — if the instruction turns out to be Gt

Token
/1“/ on the correct path, useful work was done —if the P 0\§
Cﬂ/ instruction turns out to be on the wrong path, \
hopefully program state is not lost LFCP {

QD\/ » make a smarter guess and fetch IW + (00
- expected target Cv\s ]Qd/\ MW N oA




Control Hazards
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Branch Delay Slots

(Delav, s lt
3 >0L»

use N e st

a. From before b. From target

> if $s2 =0 then —

|~ add $s1, $s2, $s3
’3@‘

ﬁl Delay slot

.‘ HML@LDYC— )n‘k b{or'\df\ CD

i

if $s2 = 0 then ——

add $s1, $s2, $s3

A

sub $t4, $t5, $16 <«— i
el
P\‘DD
add $s1, $s2, $s3
if $s1 = 0 then — S-"M"‘) ~
Delay slot / \

Becomes

/

-

add $s1, $s2, $s3 ( [gigb )
if $s1 = 0 then —— \
& A\

sub $t4, $t5, $t6

Source: H&P textbook



Pipeline without Branch Predictor
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Pipeline with Branch Predictor

Branch
Predictor
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Bimodal Predictor

14 bits

Branch PC

Table of
16K entries
of 2-bit
saturating
counters
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2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

... sound familiar?

e |f (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for

each branch

Indexing functions
Multiple branch predictors
History, trade-offs
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Slowdowns from Stalls

e Perfect pipelining with no hazards = an instruction
completes every cycle (total cycles ~ num instructions)
- speedup = increase in clock speed = num pipeline stages

e With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled

instruction completes

e Total cycles = number of instructions + stall cycles
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Multicycle Instructions

5 30 Erasdar Bohanos [LEEA)L A dghis rosorsed.

e Multiple parallel pipelines — each pipeline can have a different
number of stages

e |nstructions can now complete out of order — must make sure

that writes to a register happen in the correct order
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