Lecture 20: Branches, OO0

U T e bd;%ﬁf
— \'N\j

e Today’s topics:

C " Branch prediction
"Out-of-order execution

= (Also see class notes oni pipelining, hazards, etccs}) Rj

C(/7 Cg"“’PO\

0
23
P w ol
%) S%VUD o hawlo

H
(]
[
9
o

PaP

L —{F—F—BE M
Problem 4 —ho Byp)Jw|F & D DE Re AL DY DR Rw
De DT pE DE RR

L . foC
A 7 or 9 stage pipeline, RR and RW take an entire stage
C
T~ P

;-ﬁ-zg‘?g_v/

F || 1IF Ipec ! Dec | RR | [ALu |l Rw |!9¢ Ryi

™N
7 e b | |
(@CX(/%(&J\L L;JV\\ L)ALU DM || DM || RW
e
w $1,8(52) Ghe 7T

sy o Coche

add $4, 81, $3 ﬁy%\\m Cf%f "::SDE%L)

Problem 4 — Vl'thﬂp

A 7 or 9 stage pipeline, RR and RW take an entire stage

ZZ ———

IF IF Dec || Dec || RR ALU || RW
fot
/

ALU || DM || DM |/ RW

/

w 51,8(52) (F I DC DE gg AL DM DM RW
& (e »¢ vE YE DE R LAL

dd S4, 51, S3
Y 5= %5“\)\&5 (o

Problem 4

Without bypassing: 4 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
|F: IF :DE:DE:DE:DE: DE :DE:RR:AL:RW

With bypassing: 2 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE: RR :AL:RW

lw S1, 8(52)

|F |F Dec || Dec || RR ALU || RW
add 54,51, S3

ALU || DM || DM || RW

Pipelining Example (Recap) 1202 2 LA

Z’ g Ciowz)
* Unpipelined design: the entire circuit takes 10ns to fmlsh
Cycle time = 10ns; Clock speed 1/10ns = 100 MHz

CP| = 1(assuws) I oM = X | 8

Throughput in instructions per second = o
H#cycles in a second x instructions-per-cycle =

100 M x 1 =100 M instrs per second = 0.1 BIPS (billion instrs per sec)
—— = e g

e 5-stage pipeline: under ideal conditions, each stage takes 2ns
Cycle time = 2ns; Clock speed =1/2ns =500 MHz (5x higher)
mg to assume no stalls)

’_\>§ . .
Throughput = # cycles in a secondX instrs-per-cycle
= 500{\!\/I-x 1 =500 MIPS = 0.5 BIPS
Under ideal conditions, a 5-stage pipeline gives a 5x speedup.
5

3

Vx4l = 0.8 be S © 100
ZbCon:roI H(;zal)rds @6‘ ~ o ? \\DDS]L;S:S"L“’
- 20; L(Q\d‘e Q@D on | ! 20 ﬁd%
Ny D2 o‘ohm\?, [0Z %LL@
N~ r . 100-& Cgc
. Slmple techniques to handle control hazard staIIs
o\Pl » for every branch, introduce a stall cycle (note: every
1. 6tinstructionis a branch!) >Do W
» assume the branch is not taken and start fetching the
W&y next instruction — if the branch is taken, need hardware
:L/ to cancel the effect of the wrong-path instruction &L
» fetch the next instruction (branch delay slot) and Py,

.01 % execute it anyway — if the instruction turns out to be Gt

Token
/1“/ on the correct path, useful work was done —if the P 0\§
Cﬂ/ instruction turns out to be on the wrong path, \
hopefully program state is not lost LFCP {

QD\/ » make a smarter guess and fetch IW + (00
- expected target Cv\s]Qd/\ MW N oA

Control Hazards

Bﬂ\/\d\ DJCDNe_iD PNANY

+~+ IF

%ﬁ
T
ii 0/ |

z .
11, B | F D/R;\ ALU || DM RW// -
(TR : ‘ S%JO\OLL
e0/D/R A | om | Rw | 2
oL Vo <> ??% ikoliRaelive'd
Mﬂ} (%_&?;I:L,_q_oo (717/
_IF [[D/R||ALU | DM || RW e
BQ’KQI/S{Q\;)Z\/L\ = >
whén Be 1s NT . Mima IF || D/R || ALU || DM || RW
(m A spod N
, Joo qred)/
e B T: | b\)\AyL[Q CNON %oaal ‘Sb\w/

= TFXebl [oyl [Fy)

Hud L“APS wlh g e PY'LCV‘:LAR

Branch Delay Slots

(Delav, s lt
3 >0L»

use N e st

a. From before b. From target

> if $s2 =0 then —

|~ add $s1, $s2, $s3
’3@‘

ﬁl Delay slot

.‘ HML@LDYC—)n‘k b{or'\df\ CD

i

if $s2 = 0 then ——

add $s1, $s2, $s3

A

sub $t4, $t5, $16 <«— i
el
P\‘DD
add $s1, $s2, $s3
if $s1 = 0 then — S-"M"‘) ~
Delay slot / \

Becomes

/

-

add $s1, $s2, $s3 ([gigb)
if $s1 = 0 then —— \
& A\

sub $t4, $t5, $t6

Source: H&P textbook

Pipeline without Branch Predictor

Oﬁd‘bslzo

Pipeline with Branch Predictor

Branch
Predictor

10

Bimodal Predictor

14 bits

Branch PC

Table of
16K entries
of 2-bit
saturating
counters

11

2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)

... sound familiar?

e |f (counter >= 2), predict taken, else predict not taken

e The counter attempts to capture the common case for

each branch

Indexing functions
Multiple branch predictors
History, trade-offs

12

Slowdowns from Stalls

e Perfect pipelining with no hazards = an instruction
completes every cycle (total cycles ~ num instructions)
- speedup = increase in clock speed = num pipeline stages

e With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled

instruction completes

e Total cycles = number of instructions + stall cycles

13

Multicycle Instructions

5 30 Erasdar Bohanos [LEEA)L A dghis rosorsed.

e Multiple parallel pipelines — each pipeline can have a different
number of stages

e |nstructions can now complete out of order — must make sure

that writes to a register happen in the correct order
14

