
1

Lecture 18: Pipelining

• Today’s topics:

 5-stage pipeline
 Hazards
 Data dependence handling with bypassing
 Data dependence examples

2

A 5-Stage Pipeline

Source: H&P textbook

3

Performance Improvements?

• Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

• What assumptions were made while answering these
questions?

– No dependences between instructions
– Easy to partition circuits into uniform pipeline stages
– No latch overhead

• Is a 10-stage pipeline better than a 5-stage pipeline?

4

Quantitative Effects

• As a result of pipelining:
 Time in ns per instruction goes up
 Each instruction takes more cycles to execute
 But… average CPI remains roughly the same
 Clock speed goes up
 Total execution time goes down, resulting in lower

average time per instruction
 Under ideal conditions, speedup

= ratio of elapsed times between successive instruction
completions

= number of pipeline stages = increase in clock speed

5

Hazards

• Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

• Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

• Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch – special case
of a data hazard – separate category because they are
treated in different ways

6

Conflicts/Problems

• I-cache and D-cache are accessed in the same cycle – it
helps to implement them separately

• Registers are read and written in the same cycle – easy to
deal with if register read/write time equals cycle time/2

• Instructions can’t skip the DM stage, else conflict for RW

• Consuming instruction may have to wait for producer

• Branch target changes only at the end of the second stage
-- what do you do in the meantime?

7

Structural Hazards

• Example: a unified instruction and data cache
stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed
until a cycle is found when the resource is free these
are pipeline bubbles

• Structural hazards are easy to eliminate – increase the
number of resources (for example, implement a separate
instruction and data cache, add more register ports)

8

Data Hazards

• An instruction produces a value in a given pipeline stage

• A subsequent instruction consumes that value in a pipeline
stage

• The consumer may have to be delayed so that the time
of consumption is later than the time of production

9

Example 1 – No Bypassing

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

10

Example 1 – No Bypassing

D/R

ALU

DM

RW

IF
I1

CYC-1

D/R
I1

ALU

DM

RW

IF
I2

CYC-2

D/R
I2

ALU
I1

DM

RW

IF
I3

CYC-3

D/R
I2

ALU

DM
I1

RW

IF
I3

CYC-4

D/R
I2

ALU

DM

RW
I1

IF
I3

CYC-5

D/R
I3

ALU
I2

DM

RW

IF
I4

CYC-6

D/R
I4

ALU
I3

DM
I2

RW

IF
I5

CYC-7

D/R

ALU

DM
I3

RW
I2

IF

CYC-8

• Show the instruction occupying each stage in each cycle (no bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R7+R8R9

11

Example 2 – Bypassing

D/R

ALU

DM

RW

IF

CYC-1

D/R

ALU

DM

RW

IF

CYC-2

D/R

ALU

DM

RW

IF

CYC-3

D/R

ALU

DM

RW

IF

CYC-4

D/R

ALU

DM

RW

IF

CYC-5

D/R

ALU

DM

RW

IF

CYC-6

D/R

ALU

DM

RW

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

• Show the instruction occupying each stage in each cycle (with bypassing)
if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
Identify the input latch for each input operand.

Example 2 – Bypassing
• Show the instruction occupying each stage in each cycle (with bypassing)

if I1 is R1+R2R3 and I2 is R3+R4R5 and I3 is R3+R8R9.
Identify the input latch for each input operand.

D/R

ALU

DM

RW

IF
I1

CYC-1

D/R
I1

ALU

DM

RW

IF
I2

CYC-2

D/R
I2

ALU
I1

DM

RW

IF
I3

CYC-3

D/R
I3

ALU
I2

DM
I1

RW

IF
I4

CYC-4

D/R
I4

ALU
I3

DM
I2

RW
I1

IF
I5

CYC-5

D/R

ALU

DM
I3

RW
I2

IF

CYC-6

D/R

ALU

DM

RW
I3

IF

CYC-7

D/R

ALU

DM

RW

IF

CYC-8

L3 L3 L4 L3 L5 L3

13

Problem 1

add $1, $2, $3
lw $4, 8($1)

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

14

Problem 2

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

lw $1, 8($2)
lw $4, 8($1)

15

Problem 3

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

lw $1, 8($2)
sw $1, 8($3)

16

