Lecture 16: Basic Pipelining
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Midterm Prep

* |[n-class midterm 2 weeks away
* Prep: homework, nzgt’e_islides/examples, videos, sample midterm
e 80% homeworks, 10% brief conceptTuestions 10% difficult/new

e Time constrained ~—~  —> pme JOIAJ%} retovo
> MIPS assembly questions i 25”5 CO R lies
e Single sheet of notes (both sides) — green sheet allowed
o Phgne/calculator allowed for calculations \4
e 90 minute test — 10:40 — 12:10 127 % 2
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Multi-Stage Circuit

e |Instead of executing the entire instruction in a single

cycle (a sigﬁlgg{gég%)de&’g break up the execution into
multiple stages, éLC(h s’epa}rated by a latch
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The Assembly Line /(\,\MPJ: | CW/ZL( s

Unpipelined //7 Start and finish a job before moving to the next




Performance Improvements?
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e Does it take longer to finish each individual job? .
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e Does it take shorter to finish a series of jobs? ,
o= Yes  (rewr f paralledis.
&Vhat assumptions were made while answering these

guestions?

e |s a 10-stage pipeline better than a 5-stage pipeline?
/_/ e



A 5-Stage Pipeline
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A 5-Stage Pipeline
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branches take 2 cyc (there is enough work that bral c‘\es can easily take more) 40) .
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A 5-Stage Pipeline Al /‘iil} icéf i@dtz}

ALU computation, effective address cgmputation for load/store &+ t (-/ 2
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A 5-Stage Pipeline

Memory access to/from data cache, batsh S /

Time (in clock cycles)
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A 5-Stage Pipeline

Write result of ALU computation or load into register file /7
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Pipeline Summary

™M RR AL DM RW

ADD R1,R2, > R3 RdR1,R2 R1+R2 O Wr R3

\

BEQ R1,R2,100 RdR1,R2 \-- - .
Bl

Compare, Set PC —

LD 8[R3] = R6 Rd R3 R3+8 Getdata WrR6

= = —

ST 8[R3] < R6  RAR3,R6 R3+8 Wr data @
— <~ —S——
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Performance Improvements? Sre 1 ﬁMsk

| \r\S’\Y‘/——_f

e Does it take longer to finish each individual job? QM Mg
o

Neo ~(\atch
e Does it take shorter to ﬁniS\Tﬁ series of jobs? | (A per C*y)'i
lfV( Oj:lﬂo = Co""'r [M (rs |\t Pe” | no
e What assumptions were made while answering these |:2ns
guestions? re hazads

— No dependences between instructions
— Easy to partition circuits into uniform pipeline stages

e

— No latch overhead } ;;
nrche 32X o b
e |s a 10-stage pipeline better than a 5-stage pipeline? /1
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Quantitative Effects

e As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPl remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed
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Conflicts/Problems

e |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

e Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?
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Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

e Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways
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