Lecture 16: Basic Pipelining

e Today’s topics: A \z/ M= R@U\M
= 5-stage pipeline 5655 el

= Hazards % /l()n\l"la-(f l\/lloH@/(fY\
H(’JG OM"Q ’;((a H"galpm

Midterm Prep

* |[n-class midterm 2 weeks away
* Prep: homework, nzgt’e_islides/examples, videos, sample midterm
e 80% homeworks, 10% brief conceptTuestions 10% difficult/new

e Time constrained ~—~ —> pme JOIAJ%} retovo
> MIPS assembly questions i 25”5 CO R lies
e Single sheet of notes (both sides) — green sheet allowed
o Phgne/calculator allowed for calculations \4
e 90 minute test — 10:40 — 12:10 127 % 2

-

Multi-Stage Circuit

e |Instead of executing the entire instruction in a single

cycle (a sigﬁlgg{gég%)de&’g break up the execution into
multiple stages, éLC(h s’epa}rated by a latch

N

File

The Assembly Line /(\,\MPJ: | CW/ZL(s

Unpipelined //7 Start and finish a job before moving to the next

Performance Improvements?

TOREAD gqu‘nig: ()

L
Coms | e
e Does it take longer to finish each individual job? .
—_— _ . o~ ™MD <€ ’\"\f"‘Q

- CO\JUL\QQJA%

e Does it take shorter to finish a series of jobs? ,
o= Yes (rewr f paralledis.
&Vhat assumptions were made while answering these

guestions?

e |s a 10-stage pipeline better than a 5-stage pipeline?
/_/ e

A 5-Stage Pipeline

I

CT::EE - ydeccz 8;5 cc 3 CC 4 cCs
I '_fml;t; ’gl H DM _Fiel.gl ___3 IL
w UAF =
L2 || _ B >
I [Reg -

Source: H&P textbook 6

A 5-Stage Pipeline

&(

g\

Time (in clock cycles)

cC1

—_—

Use the PC to access the I-cache and increment PC by 4

cca

cC 4

DM

N
L

cC 6

r: Reg

?f’iooo BG& v}
A 5-Stage Pipelife ' ~7A>o 757 & e o

branches take 2 cyc (there is enough work that bral c‘\es can easily take more) 40) .

/time (in clock cycles)

cC1 cca

| WA ‘ e
Vd Y
|

J/
Y

A 5-Stage Pipeline Al /‘iil} icéf i@dtz}

ALU computation, effective address cgmputation for load/store &+ t (-/ 2

Time (in clock cycles)
cC1 cCc2 Cfgo/ CcC4 CC 5 cCe6
I : e

=
|
5—15
i i
8
|
cn| @Y
2 8
2

¥ [R g %—
| —d P
n O 4 R 9

A 5-Stage Pipeline

Memory access to/from data cache, batsh S /

Time (in clock cycles)

cC1

e A
tdd ﬁt(,‘&"tzj &5 [~) E %F lT—H

o0 =

— — s+ 2

10

A 5-Stage Pipeline

Write result of ALU computation or load into register file /7

Time (in clock cycles)

cC1

cca

i

cC 4

DM

=y

0

—

i

11

Pipeline Summary

™M RR AL DM RW

ADD R1,R2, > R3 RdR1,R2 R1+R2 O Wr R3

\

BEQ R1,R2,100 RdR1,R2 \-- - .
Bl

Compare, Set PC —

LD 8[R3] = R6 Rd R3 R3+8 Getdata WrR6

= = —

ST 8[R3] < R6 RAR3,R6 R3+8 Wr data @
— <~ —S——

12

WPL,(PJA)\LJL ’,)fDC/(Ct
Performance Improvements? Sre 1 ﬁMsk

| \r\S’\Y‘/——_f

e Does it take longer to finish each individual job? QM Mg
o

Neo ~(\atch
e Does it take shorter to ﬁniS\Tﬁ series of jobs? | (A per C*y)'i
lfV(Oj:lﬂo = Co""'r [M (rs |\t Pe” | no
e What assumptions were made while answering these |:2ns
guestions? re hazads

— No dependences between instructions
— Easy to partition circuits into uniform pipeline stages

e

— No latch overhead } ;;
nrche 32X o b
e |s a 10-stage pipeline better than a 5-stage pipeline? /1

| 5o st ¢ relit
N Tl

Quantitative Effects

e As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPl remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed

14

Conflicts/Problems

e |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

e Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?

15

Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

e Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

16

