Lecture 15: Basic CPU Design

- Today's topics:
 - FSM examples
 - Single-cycle CPU
 - Multi-cycle CPU

Traffic light example

State Diagram

Tackling FSM Problems

- Three questions worth asking:
 - What are the possible output states? Draw a bubble for each.
 - What are inputs? What values can those inputs take?
 - For each state, what do I do for each possible input value? Draw an arc out of every bubble for every input value.

inputs = 2 HTON
input1 (INT) values = 3 ACON
imput2 (EXT) values = 3 H BOTH OFF

Desired rook

4

Finite State Machine Table

Finite State Diagram

Larrylig SnappijAlligator Latch vs. Flip-Flop RS 2 back-2 back latches

- Recall that we want a circuit to have stable inputs for an entire cycle – so I want my new inputs to arrive at the start of a cycle and be fixed for an entire cycle
- A flip-flop provides the above semantics (a door that swings open and shut at the start of a cycle)
- But a flip-flop needs two back-to-back D-latches, i.e., more transistors, delay, power
- You can reduce these overheads with just a single D-latch (a door that is open for half a cycle) as long as you can tolerate stable inputs for just half a cycle

Basic MIPS Architecture

Now that we understand clocks and storage of states, we'll design a simple CPU that executes:

- basic math (add, sub, and, or, slt) ALU
- memory access (lw and sw)
- branch and jump instructions (beq and j)

POST MIDTERM

2

PRE

MID TERM

Implementation Overview

- We need memory
 - to store instructions
 - to store data
 - for now, let's make them separate units
- We need registers, ALU, and a whole lot of control logic
- CPU operations common to all instructions:
 - use the program counter (PC) to pull instruction out of instruction memory
 - read register values

add sti, stz, stz

View from 30,000 Feet

Clocking Methodology

- Which of the above units need a clock?
- What is being saved (latched) on the rising edge of the clock?
 Keep in mind that the latched value remains there for an entire cycle

Implementing R-type Instructions

- Instructions of the form add \$t1, \$t2, \$t3
- Explain the role of each signal

Implementing Loads/Stores

a. Data memory unit Source: H&P textbook

Implementing Locals/Stores

Implementing J-type Instructions

• Instructions of the form beq \$t1, \$t2, offset

View from 10,000 Feet

17

View from 5,000 Feet

18

Latches and Clocks in a Single-Cycle Design

- At the rising edge, the result of the previous cycle is recorded
- At the falling edge, the address of LW/SW is recorded so we can access the data memory in the 2nd half of the cycle