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Lecture 10: Division, Floating Point

• Today’s topics: 

 Division
 IEEE 754 representations
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Divide Example

• Divide 7ten (0000 0111two)  by  2ten (0010two)

RemainderDivisorQuotStepIter

0000 01110010 00000000Initial values0

1110 0111
0000 0111
0000 0111

0010 0000
0010 0000
0001 0000

0000
0000
0000

Rem = Rem – Div
Rem < 0  +Div, shift 0 into Q
Shift Div right

1

1111 0111
0000 0111
0000 0111

0001 0000
0001 0000
0000 1000

0000
0000
0000

Same steps as 12

0000 01110000 01000000Same steps as 13

0000 0011
0000 0011
0000 0011

0000 0100
0000 0100
0000 0010

0000
0001
0001

Rem = Rem – Div 
Rem >= 0  shift 1 into Q
Shift Div right

4

0000 00010000 00010011Same steps as 45
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Hardware for Division

A comparison requires a subtract; the sign of the result is examined;
if the result is negative, the divisor must be added back

Similar to multiply, results are placed in Hi (remainder) and Lo (quotient)

Source: H&P textbook
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Efficient Division

Source: H&P textbook



5

Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor  +  Remainder

+7   div  +2          Quo =           Rem = 
-7   div  +2          Quo =           Rem = 

+7   div   -2          Quo =           Rem = 
-7   div   -2          Quo =           Rem = 
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Divisions involving Negatives

• Simplest solution: convert to positive and adjust sign later

• Note that multiple solutions exist for the equation:
Dividend = Quotient x Divisor  +  Remainder

+7   div  +2          Quo = +3          Rem = +1
-7   div  +2          Quo = -3           Rem = -1

+7   div   -2          Quo = -3           Rem = +1
-7   div   -2          Quo = +3          Rem = -1

Convention: Dividend and remainder have the same sign  
Quotient is negative if signs disagree
These rules fulfil the equation above
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Take Homes

• Grade school algorithms are commonly used – the algorithms are
even easier in binary (mult by 1 and 0)

• They can be implemented in hardware with shifts, add, sub, checks

• To improve efficiency, look for ineffectuals – are only some bits 
changing in every step – allows us to use narrow adders and  
registers – allows us to pack more operands in one register

• Can also improve speed by throwing more transistors and parallel 
computations at the problem
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Floating Point

• Normalized scientific notation: single non-zero digit to the
left of the decimal (binary) point – example: 3.5 x 109

• 1.010001 x 2-5
two = (1 + 0 x 2-1 + 1 x 2-2 + … + 1 x 2-6) x 2-5

ten

• A standard notation enables easy exchange of data between
machines and simplifies hardware algorithms – the 
IEEE 754 standard defines how floating point numbers
are represented
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                              23 bits

S E F

• More exponent bits  wider range of numbers (not necessarily more
numbers – recall there are infinite real numbers)

• More fraction bits  higher precision

• Register value = (-1)S x F x 2E

• Since we are only representing normalized numbers, we are
guaranteed that the number is of the form 1.xxxx.. 
Hence, in IEEE 754 standard, the 1 is implicit
Register value = (-1)S x (1 + F) x 2E
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Exponent Representation

• To simplify sort, sign was placed as the first bit

• For a similar reason, the representation of the exponent is also
modified: in order to use integer compares, it would be preferable to
have the smallest exponent as 00…0 and the largest exponent as 11…1

• This is the biased notation, where a bias is subtracted from the
exponent field to yield the true exponent

• IEEE 754 single-precision uses a bias of 127  (since the exponent
must have values between -127 and 128)…double precision uses 
a bias of 1023

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)
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Sign and Magnitude Representation

Sign       Exponent                                         Fraction
1 bit          8 bits                                              23 bits

S E F

• Largest number that can be represented: 2.0 x 2128 = 2.0 x 1038

(not really – see upcoming details)
• Smallest number that can be represented: 1.0 x 2-127 = 2.0 x 10-38

(not really – see upcoming details)
• Overflow: when representing a number larger than the max;

Underflow: when representing a number smaller than the min

• Double precision format: occupies two 32-bit registers:
Largest:                                  Smallest:

Sign       Exponent                                         Fraction
1 bit          11 bits                                              52 bits

S E F
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Details

• The number “0” has a special code so that the implicit 1 does not
get added: the code is all 0s
(it may seem that this takes up the representation for 1.0, but
given how the exponent is represented, that’s not the case)
(see discussion of denorms in the textbook)

• The largest exponent value (with zero fraction) represents +/- infinity

• The largest exponent value (with non-zero fraction) represents
NaN (not a number) – for the result of 0/0 or (infinity minus infinity)

• Note that these choices impact the smallest and largest numbers
that can be represented
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0 00..0 00…0Value 0

Value 1 0  127  00…0

Value inf
Value NAN
Highest value ~2 x 2127

0  255  00…0
0  255  xx….x
0  254  11….1

Smallest Norm 1 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm ~2-149

0  0..01  00…0
0  0..00  11…1
0  0..00  00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0.

Denorms don’t have implicit 1. They have exp 2-126
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

Remember:

True exponent                    Exponent in register
+127

-127
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0
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Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  36.90625ten in single-precision format

36 / 2 = 18 rem 0
18 / 2 = 9   rem 0
9 / 2 = 4   rem 1
4 / 2 = 2   rem 0
2 / 2 = 1   rem 0
1 / 2 = 0   rem 1

36 is 100100

0.90625 x 2 = 1.81250
0.8125 x 2 = 1.6250
0.625 x 2 = 1.250
0.25 x 2 = 0.50
0.5 x 2 = 1.00
0.0 x 2 = 0.0

0.90625 is 0.1110100…0



17

Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

We’ve calculated that 36.90625ten = 100100.1110100…0 in binary
Normalized form = 1.001001110100…0 x 25

(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is  001001110100…0  (the 23 bits after the point)
The exponent field is  5 + 127 (have to add the bias) = 132,

which in binary is  10000100

The IEEE 754 format is   0   10000100  001001110100…..0
sign  exponent     23 fraction bits
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