Lecture 9: Addition, Multiplication & Division

e Today’s topics: H N 3 M (/\) @0‘\
— -
= Addition Mgk

oo | ol prded fes
K//E/OJ mi;_
_ﬁ J\M\Q f’\€><t E(ula\,j

(> poglams u
7 N oo Wry

TN
|
%99

. . A
Addition and Subtraction A - 3

° eyt E(V):"

Addition is similar to decimal arithmetic
ool |

e For subtraction, simply add the negative number — hence,
subtract A-B involves negating B’s bits, adding 1 and A

o o /*‘

(0) (0) (ﬂ (1) (0) (Carries) _ b bit
0 0 0 1 1 —> 7
- 0 0o 0 1 (

@ ¢ bit
| 1 |1] o3
. (0

(¥) (0) H1 (1) o (O 1 & A B
Source: H&P textbook

Overflows

e For an unsigned number, overflow happens when the last carry (1)
e —
cannot be accommodated

l
EFor a signed number, overflow happens when the most significant bit

is not the same as every bit to its left Ol (e~~~
= when the sum of two positive numbers is a negative result 5 | . -~ ~>
= when the sum of two negative numbers is a positive result lﬁ
Wsitive and negative number will never overflow ve
4+

e MIPS allows addu and subu instructions that work with unsigned V\WVL%
integers and never flag an overflow — to detect the overflow, other ‘
instructions will have to be executed

Bi\r%
o —V&
NSl

M%L — @EXWL\Q— bﬁs s‘GGB
Multiplication Example ®Ji—;%.é\ Cs‘@@m“””b

A Multiplicand ———> 1\009@,g Zﬁ 2 \
6 Multiplier ———>x 1001, ” 3
4 bk
Mul o

Product

12

In every step
e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 1

-
Multiplicand
-— — _—_ Shiftleft |<—
_ 64 bits
\I% ﬁ i B
O Multiplier
AOD Gl B%EJ (j) rat \ Shift right |<—
B S 32 bits | =—
*W/ v " Co—
Froduct) Control test)
Write —
4 bits
KMCVLF Vg ‘SU/M Source: H&P textbook
In every step *SI{‘F
e multiplicand is shifted -~

e next bit of multiplier is examined (also a shifting step)
e if this bit is 1, shifted multiplicand is added to the product

j 320 225
HW Algorithm 2 516() SR 4 -
5@32— 4 b 0 b
Multiplicand Ewé Su
2N\

\u/ 3\1,7;{5 Mwl’li@\ke—/ ‘
N/ = éé{ E\%
— U/ é‘lLrg 7£r/ ~

U1 L pro Shift right Control
R Cumd M UL TWrite test
—5
bi b T

Source: H&P textbook

e 32-bit ALU and multiplicand is untouched

e the sum keeps shifting right

e at every step, number of bits in product + multiplier = 64,
hence, they share a single 64-bit register

oLD ger\(AL GO

Notes SWE | A 002"’
———

B IS
\//The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form) Uy unch

e \We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

C- The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product LS saved in two 32-bit

registersj N@JW pLED
o A 2
-
RETTE S

b

MIPS Instructions

2. okl jo

muIt SsZ Ss3

fhl
mflo

Similarly for multu

computes the product and stores
it in two “internal” registers that

S ——————

can be referred toas hi and lo
USB ~ (SB

moves the value in hi into SsO

moves the value in lo into Ssl

Fast Algorithm L\Jq((ch T een

-

Mpliert » Mcand MplarD « Mcand

|

ptar2 +Mcand | e The previous algorithm
J o requires a clock to ensure that
¥ the earlier addition has
Mpsers+ Woand s completed before shifting

e This algorithm can quickly set
o up most inputs — it then has to
wait for the result of each add

i sa to propagate down — faster

1 amJ'r because no clock is involved
N/
£ -- Note: high transistor cost
32 bits +”’“

Froduciid. 32 Product 31 - - Product? Produsti ProductD

Source: H&P textbook

Division

z - 1001, Quotient — Oéﬁ_’i

Divisor 1000, | 1001010, Dividend e
-1000

10 (617724

7 14 101 - ¢l
1010 —
-1000 Q 4

[ZZL\ 724 L0n Remainder So |
d eh BY 4 ——

At every step, l é

e shift divisor right and compare it with current dividend 7]

e if divisor is larger, shift 0 as the next bit of the quotient

e if divisor is smaller, subtract to get new dividend and shift 1 ﬁe/pr\

as the next bit of the quotient 10

1€

Division

1001, Quotient
Divisor 1000te'n 1001010te,n Dividend
0001001010 0001001010 0000001010 0000001010
100000000000 - 10000007> 0000100000-20000001000
Quo: 0 000001 OOOOOlO 000001001

724
| G

At every step,
e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 1

Divide Example

e Divide 7

ten

(00000111

two

) by 2

ten

(0010

tWO)

Ilter

Step

Quot

Divisor

Remainder

0

Initial values

1

12

ooas D) (
©I0 a0 0

Divide Example

e Divide 7,,, (0000 Ollltwo) by 2., (OOlOtWO)
lter Step Quot Divisor Remaindér
0) Initial values 0000 0010 0000 00000111
1 Rem = Rem — Div 0000 0010 0000 11100111
Rem < 0 = +Diy, shift 0 into Q 0000 OO]&OOOO 00000111

- _— e —— 1
Shift [I)iv right 0000 0001 0000 00000111
2 Same stems 1 0000 0001 0000 11110111
0000 0001 0000 00000111
0000 0000 1000 OO% 0111
Same stepsas 1 0000 00000100 | 00000111
4 Rem = Rem — Div 0000 0000 0100 0000 0011
’— s— —_——
Rem >=0 =>» shift 1 into Q OO(@ 0000 0100 0000 0011
Shift Div right Cpei;-a 0000 0010 0000 0011
5 Same steps as 4 OO]é 0000 0001 0000 0001
S Q/ 2000001 |

=

