
1

Lecture 7: Examples, MARS

• Today’s topics:

More examples
MARS intro

2

int fact (int n)
{

if (n < 1) return (1);
else return (n * fact(n-1));

}

fact:
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
jr $ra

L1:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temp register $t0 is never saved.

Example 2 (pg. 101)

3

slti

if ($a0 < 1)
then …
else …

slti $t0, $a0, 1 # if $a0 < 1, set $t0 = 1, else $t0 = 0
beq $t0, $zero, else
then:

…

else:

Easier to implement with
pseudo-instructions like blt, bge.

4

Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0);
A is 65, a is 97

5

Example 3 (pg. 108)

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while ((x[i] = y[i]) != `\0’)
i += 1;

}

strcpy:
addi $sp, $sp, -4
sw $s0, 0($sp)
add $s0, $zero, $zero

L1: add $t1, $s0, $a1
lb $t2, 0($t1)
add $t3, $s0, $a0
sb $t2, 0($t3)
beq $t2, $zero, L2
addi $s0, $s0, 1
j L1

L2: lw $s0, 0($sp)
addi $sp, $sp, 4
jr $ra

Notes:
Temp registers not saved.

6

Saving Conventions

• Caller saved: Temp registers $t0-$t9 (the callee won’t
bother saving these, so save them if you care), $ra (it’s
about to get over-written), $a0-$a3 (so you can put in
new arguments), $fp (if being used by the caller)

• Callee saved: $s0-$s7 (these typically contain “valuable”
data)

• Read the Notes on the class webpage on this topic

7

Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… combine this with an
OR instruction to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used

• See green sheet!

8

Starting a Program

C Program

Assembly language program

Object: machine language module Object: library routine (machine language)

Executable: machine language program

Memory

Compiler

Assembler

Linker

Loader

x.c

x.s

x.o x.a, x.so

a.out

9

Role of Assembler

• Convert pseudo-instructions into actual hardware
instructions – pseudo-instrs make it easier to program
in assembly – examples: “move”, “blt”, 32-bit immediate
operands, labels, etc.

• Convert assembly instrs into machine instrs – a separate
object file (x.o) is created for each C file (x.c) – compute
the actual values for instruction labels – maintain info
on external references and debugging information

10

Role of Linker

• Stitches different object files into a single executable

 patch internal and external references
 determine addresses of data and instruction labels
 organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the
executable points to dummy routines – these dummy
routines call the dynamic linker-loader so they can
update the executable to jump to the correct routine

11

Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

12

The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap: sll $t1, $a1, 2
add $t1, $a0, $t1
lw $t0, 0($t1)
lw $t2, 4($t1)
sw $t2, 0($t1)
sw $t0, 4($t1)
jr $ra

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}

13

The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move $s0, $zero # initialize the loop
loopbody1: bge $s0, $a1, exit1 # will eventually use slt and beq

… body of inner loop …
addi $s0, $s0, 1
j loopbody1

exit1:

for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}

14

The sort Procedure

• The inner for loop looks like this:

addi $s1, $s0, -1 # initialize the loop
loopbody2: blt $s1, $zero, exit2 # will eventually use slt and beq

sll $t1, $s1, 2
add $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
ble $t3, $t4, exit2
… body of inner loop …
addi $s1, $s1, -1
j loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}

15

Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin
“sort” by copying its arguments into $s2 and $s3 – must update
the rest of the code in “sort” to use $s2 and $s3 instead of
$a0 and $a1

• Must save $ra at the start of “sort” because it will get
over-written when we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that
belongs to the procedure that called “sort”

16

Saves and Restores

sort: addi $sp, $sp, -20
sw $ra, 16($sp)
sw $s3, 12($sp)
sw $s2, 8($sp)
sw $s1, 4($sp)
sw $s0, 0($sp)
move $s2, $a0
move $s3, $a1
…

move $a0, $s2 # the inner loop body starts here
move $a1, $s1
jal swap
…

exit1: lw $s0, 0($sp)
…

addi $sp, $sp, 20
jr $ra

9 lines of C code 35 lines of assembly

17

MARS

• MARS is a simulator that reads in an assembly program
and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be
converted to an add instruction for the host computer’s
architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts
pseudo-instructions, large constants, constants in
decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory
values to confirm that our program is behaving correctly

18

MARS Intro

• Directives, labels, global pointers, system calls

19

MARS Intro

20

MARS Intro

• Read the google doc on the class webpage for details!

21

Example Print Routine

.data
str: .asciiz “the answer is ”

.text
li $v0, 4 # load immediate; 4 is the code for print_string
la $a0, str # the print_string syscall expects the string

address as the argument; la is the instruction
to load the address of the operand (str)

syscall # MARS will now invoke syscall-4
li $v0, 1 # syscall-1 corresponds to print_int
li $a0, 5 # print_int expects the integer as its argument
syscall # MARS will now invoke syscall-1

22

Example

• Write an assembly program to prompt the user for two
numbers and print the sum of the two numbers

23

Example
.data

str1: .asciiz “Enter 2 numbers:”
.text str2: .asciiz “The sum is ”

li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall

