F(Ojﬂm\m Co IS~
Lecture 6: Assembly Programs,{ PC =04 e |

A‘SA

Cun et et PO —

o thenl.
e Today’s topics: —
% —
= Procedures Pk —
. Examples) 5(’\) H(/\) Z (:
N
{roc /O()oO\D
| >voc 5 {
Call proc B[gl probs ’ =
== —
Sl & G refuin
= (btf\}(5 3(’ 1!%(&

at gh N
Procedures ~\ /~Slkaf

‘QCDC/A (> _w
g& 'l(\k X)9 0
$b315

Gl prcC

ok ()
call proc C % e L L Ad L 4 iS’D ﬁ\
Localvarlables AR, Sfp, Ssp
2 3‘(6}(-icratchpad an: saves/restoreé%
* Arguments an retu S

e jal and Sra
—~——

< (fao gal $&2 ¥a3
Procedures(f/\ , : FNCB i

Procedures

e Each procedure (function, subroutine) maintains a_scratchpad of
register vatues — when another procedure is called (the callee), the
new w_d/ure takes over the scratchpad — values may have to be
saved so we can safely return to the caller

— D parameters (arguments) are placed where the callee can see them iao
= control is transferred to the callee jQ(. P’
= acquire storage resources for callee ﬂmuﬂs S CIC
= execute the procedure
~— place result value where caller can access it G’;\/ 0
" return control to caller ~ * &
J Cal

Jump-and-Link

e A special register (storage not part of the register file) maintains the
address of the instruction currently being executed — this is the
program counter (PC)

L

* The procedure call is executed by invoking the jump-and-link (jal)
instruction — the current wactually, PC+4) is saved in the register
Sra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress
/\ e ——

<;Since jal may over-write a relevant value in Sra, it must be saved
somewhere (in memory?) before invoking the jal instruction

* How do we return control back to the caller after completing the

callee procedure? J (Q (K

The Stack

The register scratchpad for a procedure seems volatile —
it seems to disappear every time we switch procedures —
a procedure’s values are therefore backed up in memory

on a stack

Stack grows
this way 1

High address

Low address

Proc A
call ProcB
Eéll Proc C
re.’;.urn

return
return

Saves and Restores

Storage Management on a Call/Return
sCoak

e A new procedure must create space for all its variables on the stack

e Before/after executing the jal, the caller/callee must save relevant
values in $s0-$s7, Sa0-Sa3, Sra, Sfp, temps into the stack space

—— ~ =

e Arguments are copied into $a0-Sa3; the jal is executed

e After the callee creates stack space, it updates the value of Ssp

e Once the callee finishes, it copies the return value into SﬁP' frees
up stack space, and Ssp is incremented
(e &

e On return, the caller/callee brings in stack values, ra, temps into registers

e The responsibility for copies between stack and registers may fall
upon either the caller or the callee

Registers

e The 32 MIPS registers are partitioned as follows:

= Register 0: Szero always stores the constant 0

= Regs 2-3 : SvO, Svl return values of a procedure

= Regs 4-7 : Sa0-Sa3 input arguments to a procedure
= Regs 8-15: St0-St7 temporaries __

= Regs 16-23: $s0-Ss7 variables < > 57001
= Regs 24-25: $t8-St9 more temporarles

=Reg 28 :Sgp global pointer

=Reg 29 :Ssp stack pointer

=Reg 30 :Sfp frame pointer
=Reg 31 :Sra return address

Exam pIe 1 (pg. 98) [This example does not follow the conventions.]

int leaf_example (int g, int h, inti, int)
{ — —

f=(g+h)— (i +]); ¢
return f; ~—

}

q

Notes:
i In this example, the callee took care of

ving the registers it needs. W
(E/J’U@ lw

The caller took care of saving its Sra and
Sa0-Sa3.

—
Sonv
a&wJ

addi
s, /SW
SW
SW
add
add
sub
add
lw

Could have avoided using the stack altogether.

leaf _example:

addi Ssp, Ssp, 12
'!r: Sra

$5p; $Sp, -12 S
Stl, 8(Ssp)
itO, 4(Ssp)
$s0, 0(Ssp)

$t0, $a0, Sal <

St1, Sa2, Sa3
$s0, $t0, St1 <
Sv0, $s0, Szero 4
$s0, 0(Ssp)
$t0, 4(Ssp)
St1, 8(Ssp)

—~

10

Saving Conventions

e Caller saved: Temp registers St0-St9 (the callee won’t
bother saving these, so save them if you care), Sra (it’s
about to get over-written), $a0-Sa3 (so you can put in
new arguments), Sfp (if being used by the caller)

Q Callee saved: $s0-Ss7 (these typically contain “valuable”

data) J

e Read the Notes on the elass webpage on this topic
ad the Notes on

11

Example 2 (pg. 101)

—~\. -
int fact (int n) - %G

\ —

*%if(gl) return (1); &

else return (n * fact(n-1));
=

fe

Notes:
The caller saves Sa0 and Sra
in its stack space.

Smg

Temp register St0 is never saved. q

(ko

\

Jr\‘

fact: A
slti Sto, Sao, 1 {
beq StO, Szero, L1_

~ addi Sv0, Szero, 1
jr Sra

L1:

=addi $sp, Ssp, -8
SW __%2, 4(Ssp)

_sw $a0, 0(Ssp)
addi $a0, $a0, -1 -
ol fat -

; lw $ao0, O(Ssp)}
lw Sra, 4(Ssp)

_addi Ssp, Ssp, 8
mul SvO0, Sa0, SvO ¢

Sra "27

12

