
1

Lecture 5: More Instructions, Procedure Calls

• Today’s topics:

 Examples
 Numbers, control instructions
 Procedure calls

2

Memory Instruction Format

• The format of a store instruction:

source register
destination address

sw $t0, 8($t3)

any register
a constant that is added to the register in parentheses

3

Example

int a, b, c, d[10];

addi $gp, $zero, 1000 # assume that data is stored at
base address 1000; placed in $gp;
$zero is a register that always
equals zero

lw $s1, 0($gp) # brings value of a into register $s1
lw $s2, 4($gp) # brings value of b into register $s2
lw $s3, 8($gp) # brings value of c into register $s3
lw $s4, 12($gp) # brings value of d[0] into register $s4
lw $s5, 16($gp) # brings value of d[1] into register $s5

4

Example

Convert to assembly:

C code: d[3] = d[2] + a;

5

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly (same assumptions as previous example):
lw $s0, 0($gp) # a is brought into $s0
lw $s1, 20($gp) # d[2] is brought into $s1
add $s2, $s0, $s1 # the sum is in $s2
sw $s2, 24($gp) # $s2 is stored into d[3]

Assembly version of the code continues to expand!

6

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)

Static data (globals)

Text (instructions)

7

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal)  0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

8

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant
($s3) ($t0)

9

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor (with $zero)

10

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for big jumps and procedure returns)

Convert to assembly:
if (i == j)

f = g+h;
else

f = g-h;

11

Control Instructions

• Conditional branch: Jump to instruction L1 if register1
equals register2: beq register1, register2, L1
Similarly, bne and slt (set-on-less-than)

• Unconditional branch:
j L1
jr $s0 (useful for big jumps and procedure returns)

Convert to assembly:
if (i == j) bne $s3, $s4, Else

f = g+h; add $s0, $s1, $s2
else j End

f = g-h; Else: sub $s0, $s1, $s2
End:

12

Example

Convert to assembly:

while (save[i] == k)
i += 1;

Values of i and k are in $s3
and $s5 and base of array
save[] is in $s6

13

Example

Convert to assembly:

while (save[i] == k)
i += 1;

Values of i and k are in $s3
and $s5 and base of array
save[] is in $s6

Loop: sll $t1, $s3, 2
add $t1, $t1, $s6
lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
j Loop

Exit:

sll $t1, $s3, 2
add $t1, $t1, $s6

Loop: lw $t0, 0($t1)
bne $t0, $s5, Exit
addi $s3, $s3, 1
addi $t1, $t1, 4
j Loop

Exit:

14

Registers

• The 32 MIPS registers are partitioned as follows:

 Register 0 : $zero always stores the constant 0
 Regs 2-3 : $v0, $v1 return values of a procedure
 Regs 4-7 : $a0-$a3 input arguments to a procedure
 Regs 8-15 : $t0-$t7 temporaries
 Regs 16-23: $s0-$s7 variables
 Regs 24-25: $t8-$t9 more temporaries
 Reg 28 : $gp global pointer
 Reg 29 : $sp stack pointer
 Reg 30 : $fp frame pointer
 Reg 31 : $ra return address

15

Procedures

• Local variables, AR, $fp, $sp
• Scratchpad and saves/restores
• Arguments and returns
• jal and $ra

