Lecture 4: MIPS Instruction Set

e Today’s topics:

= Chapter 1 wrap-up
= MIPS instructions
= Code examples

HW 1 due today/tomorrow!
HW 2 posted later today
Piazza signup link

Common Principles

e Amdahl’s Law

e Energy: performance improvements typically also result
in energy improvements — less leakage

* 90-10 rule: 10% of t@maccounts for 90% of
execution time

e Principle of locality: the same data/code will be used
again (temporaltocality), nearby data/code will be
touched next (spatial locality)

e —

Recap

e Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

(e Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,

power/thermal constraints, long memory/disk latencies j

e Reasoning about performance: clock speeds, CPI,
. Q_—_\]
benchmark suites, performance and power equations

e Next: assembly instructions

Instruction Set

e Understanding the language of the hardware is key to understanding
the hardware/software interface

e A program (in say, C) is compiled into an executable that is composed
of machine instructions — this executable must also run on future
machines — for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

e Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

e What are important design principles when defining the i/nstruction
set architecture (ISA)?

L —

A Basic MIPS Instruction

C code: a=b+c;
\\/ Céw/pttb//
Assembly . (human-friend|ly machine instructions)

aisthe sumof bandc

J/ 1S Serbles

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

32 b SCH o

Translate the following C code into assembly code:

a=b+c+d+e:
'\/— 5

Instruction Set

e Important design principles when defining the
instruction set architecture (ISA):
"\

" keep the hardware simple —the chip must only
implement basic primitives and run fast

" keep the instructions regular — simplifies the
decoding/scheduling of instructions j

MIES xEh (el D)

We will later discuss RISC vs CISC

=<
ﬁejw ~Gorex

Example

Ccode a=b+c+d+e

e |nstructions are simple: fixed number of operands (unlike C)

e A single line of C code is converted into multiple lines of
assembly code

e Some sequences are better than others... the second
sequence needs one more (temporary) variable f

Subtract Example

Ccode f=(g+h)—{(i+]j);
translates into the following assembly code:

e Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative... more on this later

Operands E‘ VoS (D

e In C, each “variable” is a location in memory

e |n hardware, each memory access is expensive — if
variable a is accessed repeatedly, it helps to bring the

variable into an on-chip scratchpad and operate on the ‘: T

scratchpad (registers) ~
ey
T . . Add -
e To simplify the instructions, we require that each M@/n’)
instruction (add, sub) only operate on registers

e Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed...

there can be only so many scratchpad registers
C—— 9

Registers

e The MIPS ISA haﬂregisters (x86 has 8 registers) — ¢|
Why not more? Why not less?

— S(E .‘ E
e Each register is 32 bits wide (modern 64-bit architectures

\

have 64-bit wide registers) 22k wicoq
e A 32-bit entity (4 bytes) is referred to as a word ¢ ‘M — T
| 2
e To make the code more readable, registers are Y:
partitioned as Ss0-Ss7 (C/Java variables), St0-5t9
(temporary variables)... (Iclok isﬁﬁ,iﬂ

add $s0, Ss1, Ss2 —J

10

‘u\ DOOD
Binary Stuff «:—g ~d poslsy 52 b

2 ~ f\C" 1D I
e 8 bits = 1 Byte, also written as 8b g NG~D ,O'ﬁ
——————— —_—] = M¢ 'D'L
(o

e 1 word =32 bits =4B \© ,‘ _
S Wore = =25 02 wall 673
e 1KB = 1024 B = 210 B E ZW e Kz (o3

M e 1o

() o — 20
1MB = 1024 x 1024 B = 220B Sj‘l”g!‘ CH 1D
|GR < 520 T
* 1GB=1024x1024x 1024B=2%8 ° . ock

—_

e A 32-bit memory address refers to a number between
0 and 232-1, i.e,, it identifies a byte in a 4GB memory

Z =\

Memory Operands add $5°)$51 iy

e Values must be fetched from memory before (add and subj}jxre/
O

instructions can operate on them

Load\word

(Iw |$t0, memory-address
Y= ——
et
Store word_>, So
sw St0, memory-address

===

da-g\ ~ ~wod
\ o lkg\ﬁ/ [90d lLQ\W((

How is memory-address determined?

/’7

0

\
31!; QA%%

Memory Address |w) $5)> 4(43p

3? ('\GW‘QMF: 8)060)004,

fro&o\q

e The compiler organizes data in memory... it knows the

location of every variable (saved in a table)... it can fill
in the appropriate mem- address for load-store instructions

Z,‘B (o oV K Rle T [gof £O
d\ . ﬂ; A 3%5)
int a, b, ¢, d[10] #3‘ 75 ;&O \i’??* 3

add(_

%,0%% o I/ll _)__ﬁfi %
s 22 b wide - J

&A emory

Base address #3‘3& LDW)@ mlm

&8’000 op© 1

J

Memory Organization

Sgp points to area in memory that saves global variables

Sgp

Static data (globals)

Text (instructions)

14

Memory Instruction Format

e The format of a load |nstruct|on Lc

destination register 8 600 20D EA\ %&3 “Q iB
] sou/rce address . A&ak %

8(°B°) 6o

L_> /LCS -\.5 YW\ &N QM/
(oled T
| (laed Ry
any register

a constant that is added to the register in parentheses

1 < \IO\X”‘Q’ g\a(a_& ©
A\ &b’D 46 Xl/z(;goog

2% l Mlsd/)"’\

lw St0, 8(St3)

Memory Instruction Format

e The format of a store instruction:

source register
] destination address

sw St0, 8(St3)

any register
a constant that is added to the register in parentheses

16

Example

inta, b, c, d[10];

addi Sgp, Szero, 1000 # assume that data is stored at

base address 1000; placed in Sgp;
Szero is a register that always

equals zero

£ £z 2

Ss1, 0(Sgp)
Ss2, 4(Sgp)
Ss3, 8(Sgp)
Ss4, 12(Sgp)
Ss5, 16(Sgp)

brings va
brings va
brings va
brings va
brings va

ue of a into register Ss1
ue of b into register $s2
ue of c into register Ss3
ue of d[0] into register Ss4
ue of d[1] into register Ss5

17

Example

Convert to assembly:

Ccode: d[3] =d[2] + a;

18

Example

Convert to assembly:

Ccode: d[3] =d[2] + a;

Assembly (same assumptions as previous example):
lw SsO, 0(Sgp) # ais broughtinto SsO
lw Ss1,20(Sgp) # d[2]is brought into Ss1
add Ss2,Ss0, Ss1 # the sumisin Ss2
sw Ss2,24(Sgp) # Ss2is stored into d[3]

Assembly version of the code continues to expand!

19

