Lecture 2: Performance

- Today's topics:
 - Technology wrap-up
 - Performance trends and equations

Metrics

• Reminders: YouTube videos, canvas, and class webpage:

https://www.cs.utah.edu/~rajeev/cs3810/

HW 1 posted later today

Summary PX V2 Perf

- Three roadblocks: power, ideas, technology scaling
- Fixed power budget because of cooling constraints; implies that frequency can't be increased; discourages complex ideas
- End of voltage (Dennard) scaling in early 2010s; the end of Moore's Law also imminent
- Has led to dark silicon and dim silicon (occasional turbo)
- The rise of accelerators

Important Trends

- Historical contributions to performance:
 - 1. Better processes (faster devices) ~20%
 - 2. Better circuits/pipelines ~15%
 - 3. Better organization/architecture ~15%

In the future, bullet-2 will help little and bullet-1 will eventually disappear!

	Pentium	P-Pro	P-II	P-III	P-4	<u>Itanium</u>	Montecito
Year	1993	95	97	99	2000	2002	2005
Transistors	3.1M	5.5M	7.5M	9.5M	42M	300M	1720M
Year Transistors Clock Speed	60M	200M	300M	500M	1500M	800M	1800M

Moore's Law in action

What Does This Mean to a Programmer?

- Today, one can expect only a 20% annual improvement; the improvement is even lower if the program is not multi-threaded
 - A program needs many threads
 - The threads need efficient synchronization and communication
 - Data placement in the memory hierarchy is important
 - Accelerators should be used when possible

Challenges for Hardware Designers

- Find efficient ways to
 - improve single-thread performance and energy
 - improve data sharing
 - boost programmer productivity
 - manage the memory system
 - build accelerators for important kernels
 - provide security

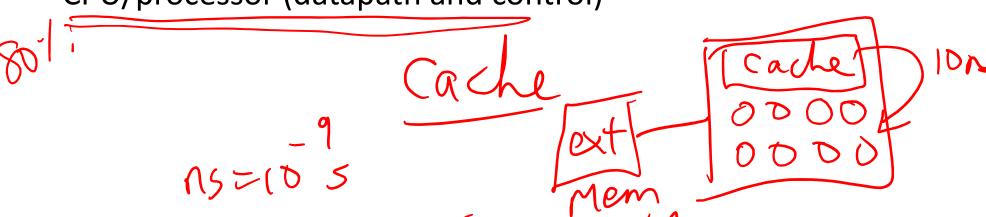
The HW/SW Interface

Application software

Systems software (OS, compiler)

a[i] = b[i] + c;Compiler ISA \$15,0(\$2) add \$16, \$15, \$14 add \$17, \$15, \$13 \$18, 0(\$12) lw \$19, 0(\$17) add \$20, \$18, \$19 \$20, 0(\$16) SW **Assembler**

Hardware


000000101100000 110100000100010

•••

16 ans 15 Hors

Computer Components

- Input/output devices
 - Secondary storage: non-volatile, slower, cheaper (HDD/SSD)
- Primary storage: volatile, faster, costlier (RAM)
 - CPU/processor (datapath and control)

Wafers and Dies bandwidth/latera, Source: H&P Textbook

Manufacturing Process

- Silicon wafers undergo many processing steps so that different parts of the wafer behave as insulators, conductors, and transistors (switches)
- Multiple metal layers on the silicon enable connections between transistors
- The wafer is chopped into many dies the size of the die determines yield and cost

Processor Technology Trends

- Shrinking of transistor sizes: 250nm (1997) \rightarrow 130nm (2002) \rightarrow 70nm (2008) \rightarrow 35nm (2014) \rightarrow 2019 transition to 10nm, now transitioning to 7nm
- Transistor density increases by 35% per year and die size increases by 10-20% per year... functionality improvements!
- Transistor speed improves linearly with size (complex) equation involving voltages, resistances, capacitances)
- Wire delays do not scale down at the same rate as Memory Wall transistor delays

RAM Memory and I/O Technology Trends

Dynamic

• DRAM density increases by 40-60% per year, latency has reduced by 33% in 10 years (the memory wall!), bandwidth improves twice as fast as latency decreases

• Disk density improves by 100% every year, latency improvement similar to DRAM

Networks: primary focus on bandwidth; 10Mb → 100Mb in 10 years; 100Mb → 1Gb in 5 years

Performance Metrics

Policy 1 Use 1 core

Policy 2 Use 2 comes

Possible measures:

17jobs/min

- response time time elapsed between start and end of a program
- throughput amount of work done in a fixed time
- The two measures are usually linked
 - A faster processor will improve both
 - More processors will likely only improve throughput
 - Some policies will improve throughput and worsen response time (or vice versa)

• What influences performance?

Execution Time

Consider a system X executing a fixed workload W

 $Performance_x = 1 / Execution time_x$

Execution time = response time = wall clock time

 Note that this includes time to execute the workload as well as time spent by the operating system co-ordinating various events

The UNIX "time" command breaks up the wall clock time as user and system time

Speedup and Improvement

(00 X 0, | >

old sal New Sal

• System X executes a program in 10 seconds, system المحكمة • System كالمحكمة على المحكمة على المحكمة على المحكمة الم executes the same program in 15 seconds speedup of X

• System X is 1.5 times faster than system Y

- The speedup of system X over system Y is 1.5 (the ratio) = perf X / perf Y = exectime Y / exectime X = 15s / 10s = 1.5
- The performance improvement of X over Y is 1.5 - 1 = 0.5 = 50% = (perf X - perf Y) / perf Y = speedup - 1
- The execution time reduction for system X, compared to Y is (15-10) / 15 = 33%The execution time increase for Y, compared to X is

(15-10) / 10 = 50%

speedup= new 14

A Primer on Clocks and Cycles

Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks 3 billion times in a second – as we'll soon see, with each clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor, how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz processor, what is the execution time in seconds?

Performance Equation - II

CPU clock cycles = number of instrs x avg clock cycles per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle, how many instructions are there in a program that runs for 10 seconds?