
1

Lecture 23: Multiprocessors

• Today’s topics:

� RAID
� Multiprocessor taxonomy
� Snooping-based cache coherence protocol

2

RAID 0 and RAID 1

• RAID 0 has no additional redundancy (misnomer) – it
uses an array of disks and stripes (interleaves) data
across the arrays to improve parallelism and throughput

• RAID 1 mirrors or shadows every disk – every write
happens to two disks

• Reads to the mirror may happen only when the primary
disk fails – or, you may try to read both together and the
quicker response is accepted

• Expensive solution: high reliability at twice the cost

3

RAID 3

• Data is bit-interleaved across several disks and a separate
disk maintains parity information for a set of bits

• For example: with 8 disks, bit 0 is in disk-0, bit 1 is in disk-1,
…, bit 7 is in disk-7; disk-8 maintains parity for all 8 bits

• For any read, 8 disks must be accessed (as we usually
read more than a byte at a time) and for any write, 9 disks
must be accessed as parity has to be re-calculated

• High throughput for a single request, low cost for
redundancy (overhead: 12.5%), low task-level parallelism

4

RAID 4 and RAID 5

• Data is block interleaved – this allows us to get all our
data from a single disk on a read – in case of a disk error,
read all 9 disks

• Block interleaving reduces thruput for a single request (as
only a single disk drive is servicing the request), but
improves task-level parallelism as other disk drives are
free to service other requests

• On a write, we access the disk that stores the data and the
parity disk – parity information can be updated simply by
checking if the new data differs from the old data

5

RAID 5

• If we have a single disk for parity, multiple writes can not
happen in parallel (as all writes must update parity info)

• RAID 5 distributes the parity block to allow simultaneous
writes

6

RAID Summary

• RAID 1-5 can tolerate a single fault – mirroring (RAID 1)
has a 100% overhead, while parity (RAID 3, 4, 5) has
modest overhead

• Can tolerate multiple faults by having multiple check
functions – each additional check can cost an additional
disk (RAID 6)

• RAID 6 and RAID 2 (memory-style ECC) are not
commercially employed

7

Multiprocessor Taxonomy

• SISD: single instruction and single data stream: uniprocessor

• MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

• SIMD: vector architectures: lower flexibility

• MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

8

Memory Organization - I

• Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

• Multiple processors connected to a single centralized
memory – since all processors see the same memory
organization � uniform memory access (UMA)

• Shared-memory because all processors can access the
entire memory address space

• Can centralized memory emerge as a bandwidth
bottleneck? – not if you have large caches and employ
fewer than a dozen processors

9

SMPs or Centralized Shared-Memory

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

10

Memory Organization - II

• For higher scalability, memory is distributed among
processors � distributed memory multiprocessors

• If one processor can directly address the memory local
to another processor, the address space is shared �
distributed shared-memory (DSM) multiprocessor

• If memories are strictly local, we need messages to
communicate data � cluster of computers or multicomputers

• Non-uniform memory architecture (NUMA) since local
memory has lower latency than remote memory

11

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

12

SMPs

• Centralized main memory and many caches � many
copies of the same data

• A system is cache coherent if a read returns the most
recently written value for that word

Time Event Value of X in Cache-A Cache-B Memory
0 - - 1
1 CPU-A reads X 1 - 1
2 CPU-B reads X 1 1 1
3 CPU-A stores 0 in X 0 1 0

13

Cache Coherence

A memory system is coherent if:
• P writes to X; no other processor writes to X; P reads X

and receives the value previously written by P

• P1 writes to X; no other processor writes to X; sufficient
time elapses; P2 reads X and receives value written by P1

• Two writes to the same location by two processors are
seen in the same order by all processors – write serialization

• The memory consistency model defines “time elapsed”
before the effect of a processor is seen by others

14

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

� Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

� Write-update: when a processor writes, it updates other
shared copies of that block

15

Design Issues

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

16

Title

• Bullet

