3810 Review Session
Spring 2023

Hit Record!

Reminders:

* Practice exam, annotated slides, class notes, homework solutions

 Friday April 28, 8-10am. Room assignments: Last names A-R in
WEB L104. Last names S-Z in WEB 2230.

« 80-20 post-pre midterm material

 Office hours: today until 11:30am, Wed and Thurs 9-11am

* No laptops/textbooks. 6 sheets + green sheet. Calculators ok.

* SoC code of conduct

Disks Basics

Nom - o ledhile_ Sﬁf% —

Disk access remains very slow — mechanical head that has to move to the correct
“ring” of data — order of milli-seconds — high enough that a context-switch is best
Focus on other metrics, especially reliability

A sector on the disk is associated with a cyclic redundancy code (CRC) — a hash that
tellsus if the read data is correct or not — it is simply an error detector, not an error

—_—
COFFECtOFj KQA/{/Y\OQ AT M{ a/y @_ﬂ Z 2 4-» S

: f\@f/y) - D
To correct the error, RAID is commonly used NS &N S5

e ——

Reliability measures continuous service accomplishment and is usually expressed as
mean time to failure (MTTF) ((%L
Availability is measured as MTTF/(MTTF+MTTRecovery) —

£ (D)= crC

DU, Dv PR P4a DT D DY D& T

RAID) 1 O (() o O
CRLX © : (o D ,

RAIDO dund 8 o)

: no redundancy

AID 1: mirroring gﬂl = ii an-,VLga J
RAID 2 and 6: memory-style ECC and rarely deployed / R~ &5 D
RAID 3: bit-interleaved, lower cost, but no query-level parallelism 2.5 1 2 - O‘D

RAID 4: block-interleaved, lower cost, query-level parallelism, but write bottleneck"Tf 5
RAID 5: bm lower cost, query-level parallelism, write parallelism znuéj
Parity and XOR! fo""‘éj ‘; ’72/ DK A
A
amf &}@ o - \/@f
N D =
C O (
fatey Lafh X | o\qﬁﬂ eb/\f/ | Pog

m

M (Amd'ou\(| hisle
Cal cathe ke M;@J AN IR

1O~ 5+ﬁ’& g)lpdb{c\g
r

‘Unpipelined processor > Pipelined process
CPI: | \ - CPI: | L [
Clock speed: " _ ./ 7 Gtz ~ Clock speed: ;%,.,= |"¢/GH2
Throughput: ér\S - C‘j(/t& Throughput:
Cllc 5(0(;@(X | ?C @ V2% (é7ﬁ*é > | ;\/'é’7 @//’5
= 0167 Gtz X | e 0N
= 00107 Blwk par sec bro op

Circuit Assumptions (B(PS
Length of full circuit: s B¢ rn

Length of each stage: |, (M\ /
Nohazards | skalls 5\ erlyd ﬂDD"'E)
{OJW{« yhhd =0 M

0bro 2 5T W Pipeline Performance

No Bypassing

r2 £ ade By
(for the 5-stage pipeline)

Point of production: always RW middle

/"’9—

Point of consumption: always D/R middle

12 add: IF

& PoP

11 add: IF DR AL DM RW

DR DR DR AL DM RW
e =

* PoC

Data Hazards

2 stlls

Bypassing

Point of production:

add, sub, etc.: end of ALU
lw: end of DM

Point of consumption:
add, sub, lw: start of ALU)
sw S1, 8(S2): start of ALU for S2, E
start of DM for S1 |

* PoP
11 add: IF DR AU DM RW
2 add: IF DR AL DM RW
* PoC

Assumptions

&& 1 oydes

100 instructions

20 branches
14 Not-Taken, 6 Taken
Branch resolved in 6 cycle (penalty of 5)

by
Approach 1: Panic and waitT Q? fc + ¢

Crec hme = \;uﬂj + 20brx Te,. pealty Lot
(OLLe«/L(}> (0o +(200 CUC NTaken fTaken
le ® b = .

Approach 2: Fetch-next-instr

Cxechine” Lo+ 6 Tk b x

= /30 Qj((@

Approach 3: Branch Delay Slot ~ - /CD"‘*’PW’(

Option A: always useful (Q0 gy

Option B: useful when the branch & + 6 xS
goes along common fork = [0 (y<

Option C: useful when the branch | o5 |, «. €
goes along uncommon fork =170 e

Option D: no-op, always non-useful (oo 4+ 2p g %

Option A
5 Branch(_

Option B Option C

Approach 4: Branch predictor)/\V\\

Accuracy of 90% /
9 — (DO ‘l/ ?/OX (O muses

aﬁc'ﬁ&r\ it
— (00 + ZDX{\%*SI = (6 Gy * 5 4
Control Hazards

Branch prediction
and instr fetch

l

R1 € R1+R2
R2 < R1+R3

R3 < R1+R2
R1 € R3+R2

Instr Fetch Queue

P

Reorder Buffer (ROB
g_? //)/\

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
12
T3
T4
T5
T6

’““ML oo -

~

L’
N

<

Register File
R1-R32

BEQZR2 |,

Decode &
Rename

=—

Terf
V\O‘”’QP

%
~

F*e(/ufé,
< 2 b~

(e fephile

o Cohf(&(/w-r\

AR > 7
Tl € R1+R2 1=
1Tl +)|ALU| |ALU| [ALU| TACD
EQZ T2 |) /L?
T4| < 11+T_2/ j Results written to \ SS ne. A’ LU)
T5/ < T4+4T2 ROB and tags]
S broadcast to 1Q % Q\A\J' bﬂa

Issue Queue (IQ)

wadé} ol&f

el ay Cooo>

Out of Order Processor

Assumptions 1 — Al L [tz /| la}&\ ﬁﬁr&:
mwzwt () |(“ ° W

1Wtions, 1000 cycles, no stalls with L1 h'!z_g_

loads/stores: L p0O Y -
% of loads/stores that show up at L2: & / /sl oo S)/"W/ L L2

% of loads/stores that show up atL3: = y 2 of boe t = (P
% of loads/stores that show up at mem: | "/~ "2) 2

= ———"" N
Hlaces Loye 160D (1)~S
Ve by = (DDD (ye T 20x10
. : (spesd (n (m .
Chl=p° 210 (ealizay Gz) P “
Tooo = 1000 4+ 200 { 3up+ §IF = 2200
Cache Latency

2
L2 acc=10cyc, L3 acc=25cyc, mem acc =200 cyc |~k leoy LA e = 4

+ Q2RSS 4+ Lxhe

Assumptions

512KB cache, 8-way set-associative, 64-byte blocks, 32-bit addresses

C&C/lﬂe, [l 22 _ ’Z/B
Dat wze #sets x #ways x blocksize (g 2 -
Tag array size = #sets x #ways x tagsize % X2 Y4 16 J?
Offset bits = Iog(block5|ze) A _ 244 KB-
Index bits = log(#sets) = (o ’

= WS X ol<

mindex bits + offset bits = addresswidth — L6 (@/%

Clijeh = HselE » § «

> L;U<§L2a

3

{‘D
St = Hsek < Ziq =2, = 162§
// /
6 cets

Zﬁé[/[2/}%7/

Cache Size

Assumptions

i cndux G AL
16 sets, 1 way, 32-byte blocks
S

Access pattern: 4 40 400 480 512 520 1032 1540

Offset = address % 32 (address modulo 32, extract last 5)
Index =@ddress/32 % 16 (shift right by 5, extract last 4)
Tag = address/512 (shift address right by 9)
/P / |
'32-bit address | ‘?jp

23 bitstag ' 4 bits index V5 bitsoffset H/M Evicted address

4. 0 0 £ 4 M Inv
40: 0 1 8 M Inv
400: 0 12 16 M Inv
480: 0 15 0 M Inv
512: 1 0 ~/— 0 M 0
520: 1 0 ~ 8 H -
1032: 2 0 (— 8 M 512
1540: 3 0 4 M 1024

Cache Hits/Misses

Example Ob

Show how the following addresses map to the cache and yield hits or misses.
The cache is direct-mapped, has 16 sets, and a 64-byte block size.
Addresses: 8, 96, 32, 480, 976, 1040, 1096

Offset = address % 64 (address modulo 64, extract last 6)
Index = address/64 % 16 (shift right by 6, extract last 4)
Tag = address/1024 (shift address right by 10)

32-bit address

22 bits tag 4 bits index 6 bits offset
8: 0 0 8 M
96: 0 1 32 M
32: 0 0 32 H
480: 0 7 32 M
976: 0 15 16 M
1040: 1 0 16 M
1096: 1 1 8 M

11

6. Consider a 4-processor multiprocessor connected with a shared bus that has the following properties:
(1) centralized shared memory accessible with the bus, (i1) snooping-based MSI cache coherence pro-
tocol, (111) write-invalidate policy. Also assume that the caches have a writeback policy. Initially, the
caches all have invalid data. The processors issue the following three requests, one after the other.
Similar to slide 4 of lecture 23, fill in the following table to indicate what happens for every request.
Also indicate if/when memory writeback is performed. (12 points)

(a) P3: Read X
(b) P3: Write X

\

(c) P2: Write X

M — G

= Mesn
N &\a\p%k

Request Cache | Request | Who responds State State State State
Hit/Miss | on bus Cache 1 | Cache 2 | Cache 3 | Cache 4
v Inv Inv Inv
P3:RIX | ¢ X g A M] o -
\ Lan Y T S T
M55 | Missd — | < 4 —
P3: Wr X P N M
ev Dol
(T T L
s \imi& ser | T
P2: Wr X Q.) (Wy (Z;? (el rordn —
') f’ 0 _
MG AL M T T
Py B Kd . Plree | sh ch = X

Questions to ask yourself:
How does Meltdown work?
How does Spectre work?

< s
How can you force a footprint? (the relevant code sequence) (\/\) NS “l\
How can you examine footprints? (exploiting the side channel) UL [\? (j
How can you defend against these attacks? \5

| Sﬁfdlc

DfééZJ?zZ P ’HM €5 oC
Syﬁéw(ﬁ#m\ OVJ\\ ~
oo

fd(tﬂﬂmi nC(et

Security

Questions to ask yourself:

What does the programmer/compiler deal with?
What does the OS deal with?

How is translation done efficiently?

Pede dabls 7,12

Virtual Memory

Questions to ask yourself:
Why do multiprocs need to deal with prog. models, coherence, synchronization, consistency?

.. —_— —————
What are race conditions? -

What is an example synchronization primitive and how is it implemented? J/

What consiste&model is assumed by a pgrogrammer? {:‘%JV/‘\/S——

Why is it slow? ne re,o—(db-w-)/(Kﬁ CopeP

How do | make life easier for the programmer and provide high performance?
Wf/c"d% M(dﬁf(?ﬂ ™ o<t
S

=

Synchronization, Consistency

Questions to ask yourself:

What are the central philosophies in a GPU?

In what ways does the GPU design differ from a CPU?

What are the different ways that disks provide high reliability?
Can you explain how parity is used to recover lost data?

——

GPUs, Disks

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

