Lecture 26: Multiprocessors

e Today’s topics: e o

= Snooping-based coherence 2 lechures Fis el
: Synchronlzatlon Next
= Consistency

]/U\CQ‘, eyl Sessiom
(({Aa,:j K- Dam Fi'\qk EX Q.

F(ac;,w‘u_ Fif\qﬁ- =+ So luehon s
Fod—eol o (lanvas

MoEeST
Coche Col\]MGST
Example S T

Ma,TL fed §meol W \JthA

e P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state
* P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
@\(vrﬂ/emory responds, X is pla%fl(i,n cache-2 in shared state
R A AR P1 writes X: cache-1 has data in shared
FAX wep State (shared only provides read perms),
reqtéﬁst sent on bus, cache-2 snoops and
%Q/tp@n invalidates its copy of X, cache-1
Jaymoves its state to modified

e P2 reads X: cache-2 has data in invalid

M
sl

(/70\(;7,%& X state, request sent on bus, cache-1 snoops
| and realizes it has the only valid copy, so it >/
A downgrades itself to shared state and S

. responds with data, X is placed in cache-i
Main Memor)]
X in shared state, memory is also updated
o ————

2

-1 ¢ Rlock
?c'nﬁ_ﬂ fL\rM,UC l 22 B
Example lsen_conket* Olsen_ coputer 7

- =
Cache Request | Who responds | State in i State in
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv
P1:Rd X Rd Miss Rd X Memory S Inv Inv Inv
P2: Rd X Rd Miss Rd X Memory S S Inv Inv
S~—
P2: WrX Perms Upgrade X No response. Inv* Inv Inv
Sam——— . T
Miss Other caches
= . o
invalidate.
P3: Wr X Wr Miss Wr X P2 responds Inv In Inv
= CNo mewn ‘“"“9
P3:Rd X Rd Hit - - Inv Inv MZ Inv
P4:Rd X Rd Miss Rd X P3 responds. Inv Inv S S
Mem wrtbk

e}

Cache Coherence Protocols

. IDi_rrectory—baseij: A single location (directory) keeps track
of the sharing status of a block of memory

* Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

RO S 5 W§\’ AMMLtJ
» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies
» Write-update: when a processor writes, it updates other
shared copies of that block Mo ¢S T

Constructing Locks

e Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

e A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

locl<-0‘«¢¢(‘—‘>/

e

Bank balance

$1000 \

Rd $1000
Add $100
Wr $1100

Parallel (unlocked) banking transactions

RN

I\C'(_Gc ZZOIC J‘(h
'Rd $1000 ﬁa)e Con o

Add $200 .

Ftheme . (uc!((u)

Wr 51200 | floang lock (1)

Synchronization

: C . > lec
e The simplest hardware primitive that greatly facilitates~ 7 Mfm,ﬁ\ecﬂ
synchronization implementations (locks, barrlers etc.) F—Me"‘"
is an atomic read-modify-write 1 L
d)mC g (oc((
_ _ Tl Jariakl
e Atomic exchange: swap contents of register ahd memory _
—_— R

e Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory

(if memory has 0, lock is free) Tks &1 8 (?)

< _

(Iock t&s register, location lode | When multiple parallel threads

&zﬂr bnz register, lock 0<9urt execute this code, only one

\v(,\c 0¢ ad CS C m\,\(d 986‘/\ N W|” be able to enter CS
st location, #0 lock cdewme

Coherence Vs. Consistency

I ————

. Co%uarantees (i) write propagation
(a write will eventually be seen by other processors), and

(ii) write serialization (all processors see writes to the \
same location in the same order) pectfains to | veiahk
D

* The consistency model defines the ordering of writes and
reads to different memory locations — the hardware
guarantees a certain consistency model and the
programmer attempts to write correct programs with

those assumptions V,,_Mn b o aldY

O(QQUO(JC) (DC‘C(«:CL) S’l?\,_\sal‘b'\

Consistency Example -
e Consider a multiprocessor with bus-based snooping cache
coheie&?\ce we poogte ot
SM/N%) Initially A=B =0 o L Q/@SMCL'\’\
0 S| P 5 P2
e 4o ot A&l B& 1
] if (B==0) if (A==0)
Whoﬁ Crit.Section Crit.Section

/ e 0o
Ooo

Consistency Example

e Consider a multiprocessor with bus-based snooping cache
coherence

Initially A=B=0
P1 P2

A&l B&<1

if (B ==0) if (A==0)
Crit.Section Crit.Section

The programmer expected the
above code to implement a
M\,\,A lock — because of 000, both processors
(0&()‘”9@ can enter the critical section

The consistency model lets the programmer know what assumptions
they can make about the hardware’s reordering capabilities 9

Sequential Consistency

e A multiprocessor is sequentially consistent if the result
of the execution is achieveable by maintaining program
order within a processor and interleaving accesses by
different processors in an arbitrary fashion

e oo

e The multiprocessor in the previous example is not

sequentially consistent

e Can implement sequential consistency by requiring the
following: program order, write serialization, everyone has
seen an update before a value is read — very intuitive for
the programmer, but extremely slow

10

Relaxed Consistency

e Sequential consistency is very slow

e The programming complications/sgrBLseAs are causgj when the
program has racyditions (two threads dealing with same
data and at least one of the threads is modifying the data)

AN Gocles
(: If programmers are disciplined and enforce mutual exclusion
when dealing with shared data, we can allow some re-orderings

and higher performance:!

e This is effective at balancing performance & programming effort

11

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

