Lecture 25: Security, VM, Multiproc
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Spectre: Variant 2
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Virtual Memory

S —

e Processes deal with virtual memory — they have the
illusion that a very large address space is available to
them

e There is only a limited amount of physical memory that is
shared by all processes — a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

e Thanks to locality, disk access is likely to be uncommon

e The hardware ensures that one process cannot access
the memory of a different process
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Address Translation

e The virtual and physical memory are broken up into pages

8KB page size
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virtual page page offset >

number

‘ Translated to physical
page number

—

Physical address



Memory Hierarchy Properties

e A virtual memory page can be placed anywhere in physical
memory (fully-associative)

e Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

e A page table (indexed by virtual page number) is used for
translating virtual to physical page number

e The page table is itself in memory



TLB

e Since the number of pages is very high, the page table
capacity is too large to fit on chip

e A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

A TLB miss requires us to access the page table, which
may not even be found in the cache — two expensive
memory look-ups to access one word of data!

e A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
increases memory waste



TLB and Cache (ool

e |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache = longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

e Does the tag array store virtual or physical addresses?
» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present
10



Cache and TLB Pipeline

Virtual address

Offset

Virtual page number Virtual
index

Physical page number

| Physical tag

Physical tag comparion

Virtually Indexed; Physically Tagged Cache
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Bad Events

e Consider the longest latency possible for a load instruction:

= TLB miss: must look up page table to find translation for v.page P

= Calculate the virtual memory address for the page table entry
that has the translation for page P — let’s say, this is v.page Q

= TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

= Access memory location R (find this either in L1, L2, or memory)

= We now have the translation for v.page P — put this into the TLB

= We now have a TLB hit and know the physical page number — this
allows us to do tag comparison and check the L1 cache for a hit

= |f there’s a miss in L1, check L2 —if that misses, check in memory

= At any point, if the page table entry claims that the page is on disk,
flag a page fault — the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault

... phew!
phew \



Multiprocessor Taxonomy
——\/_
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e SISD: single instruction and single data stream: uniprocessor

e MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

e SIMD: vector architectures: lower flexibility
D-0 cores

7
e MIMD: most multiprocessors today: easy /\?{\struct with
off-the-shelf computers, most flexibility
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Memory Organization - |

e Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

e Multiple processors connected to a single centralized
memory — since all processors see the same memory
organization = uniform memory access (UMA)

e Shared-memory because all processors can access the
entire memory address space

e Can centralized memory emerge as a bandwidth
bottleneck? — not if you have large caches and employ
fewer than a dozen processors
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Snooping-Based Protocols . Red pesrssiod
=N00PI

e Three states for a block: invalid, shared, modified/_3 Wele peems

e A write is placed on the buzand sharers mEvailgate themselves
e The protocols are referred to as MSI, MESI, etc.

Main Memory ‘”“LJ‘(\"M/QO System
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Example

e P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

e P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

e P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

e P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops

| and realizes it has the only valid copy, so it

downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

Main Memory
16




Example

Request | Cache Request | Who responds | State in | Statein | Statein | Statein
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv

P1: Rd X
P2: Rd X
P2: Wr X

P3: Wr X

P3: Rd X

P4: Rd X

Rd Miss
Rd Miss

Perms
Miss

Wr Miss

Rd Hit

Rd Miss

Rd X
Rd X
Upgrade X

Wr X

Rd X

Memory
Memory

No response.
Other caches
invalidate.

P2 responds

P3 responds.
Mem wrtbk

S
S

Inv

Inv

Inv

Inv

Inv

Inv

Inv

Inv

Inv
Inv

Inv
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