Lecture 23: Cache, Memory

- Today's topics:
- HW9 Lue Tre
 - Example problems in cache design
 - Caching policies
 - Main memory system

Show how the following addresses map to the cache and yield hits or misses.

The cache is direct-mapped, has 16 sets, and a 64-byte block size.

Addresses: 8, 96, 32, 480, 976, 1040, 1096

Offset = address % 64 (address modulo 64, extract last 6) Index = address/64 % 16 (shift right by 6, extract last 4) Tag = address/1024 (shift address right by 10)

	///	⁾ 32-	bit address		
	22 bits tag		4 bits index	6 bits offset	•
8:	0		0	8	M
96:	0		1	32	M
32:	0		0	32	Н
480:	0		7	32	M
976:	0		15	16	M
1040	: 1		0	16	M
1096	: 1		1	8	M

- A pipeline has CPI 1 if all loads/stores are L1 cache hits
- → 40% of all instructions are loads/stores 85% of all loads/stores hit in 1-cycle L1

>50% of all (10-cycle) L2 accesses are misses Memory access takes 100 cycles What is the CPI?

> 400 are |d(st = 1000 + 600 85% of 400 = 340 are Uhits = 4600 yc

CP1 = 4600 = 4.6 60 × 10 cyc = 600 cyc accessiny LZ. € >30 x 100 cyc = 3000 cyc acceri

1000 instrs > 1000 cycles (ignore pipeline warm-up)

Exec time

+ 3000

 A pipeline has CPI 1 if all loads/stores are L1 cache hits 40% of all instructions are loads/stores 85% of all loads/stores hit in 1-cycle L1 50% of all (10-cycle) L2 accesses are misses Memory access takes 100 cycles What is the CPI?

```
Start with 1000 instructions
1000 cycles (includes all 400 L1 accesses)
+ 400 (ld/st) x 15% x 10 cycles (the L2 accesses)
+ 400 x 15% x 50% x 100 cycles (the mem accesses)
= 4,600 cycles
CPI = 4.6
```


Cache Misses

16-way 32MB L3 24-way 24MB L3

st

(11) way ZZMB L3

- On a write miss, you may either choose to bring the block into the cache (write-allocate) or not (write-no-allocate)
- On a read miss, you always bring the block in (spatial and temporal locality) – but which block do you replace?
 - > no choice for a direct-mapped cache
 - > randomly pick one of the ways to replace
 - replace the way that was least-recently used (LRU)
 - > FIFO replacement (round-robin)

Sendo-LRU

8. way cache recency list for each set

MR: 1,3,5,2,6,7,...

Writes

- When you write into a block, do you also update the copy in L2?
 - \triangleright write-through: every write to L1 \rightarrow write to L2
 - write-back: mark the block as dirty, when the block gets replaced from L1, write it to L2
- Writeback coalesces multiple writes to an L1 block into one L2 write
- Writethrough simplifies coherency protocols in a multiprocessor system as the L2 always has a current copy of data

Types of Cache Misses

prefetching > compiler

Compulsory misses: happens the first time a memory word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched many other words before re-touching the same word + the misses for a fully-associative cache

• Conflict misses: happens because two words map to the same location in the cache – the misses generated while moving from a fully-associative to a direct-mapped cache

Off-Chip DRAM Main Memory

ITB

- Main memory is stored in <u>DRAM cells</u> that have much higher storage density

 Periodically refreshed high density
- DRAM cells lose their state over time must be refreshed periodically, hence the name *Dynamic*
- A number of DRAM chips are aggregated on a DIMM to provide high capacity – a DIMM is a module that plugs into a bus on the motherboard

• DRAM access suffers from long access time and high

energy overhead

E- Gung day

Lay state less tours, or

Memory Architecture

- DIMM: a PCB with DRAM chips on the back and front
- The memory system is itself organized into ranks and banks; each bank can process a transaction in parallel
- Each bank has a row buffer that retains the last row touched in a bank (it's like a cache in the memory system that exploits spatial locality) (row buffer hits have a lower latency than a row buffer miss)