Lecture 21: OOO, Memory Hierarchy

• Today’s topics:
 - Out-of-order execution
 - Cache basics
Multicycle Instructions

- Multiple parallel pipelines – each pipeline can have a different number of stages

- Instructions can now complete out of order – must make sure that writes to a register happen in the correct order
An Out-of-Order Processor Implementation

Branch prediction and instr fetch

R1 ← R1+R2
R2 ← R1+R3
BEQZ R2
R3 ← R1+R2
R1 ← R3+R2

Instr Fetch Queue

Decode & Rename

T1 ← R1+R2
T2 ← T1+R3
BEQZ T2
T4 ← T1+T2
T5 ← T4+T2

Reorder Buffer (ROB)

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
T1
T2
T3
T4
T5
T6

Register File R1-R32

Issue Queue (IQ)

ALU

ALU

ALU

Results written to ROB and tags broadcast to IQ
Example Code

<table>
<thead>
<tr>
<th>Completion times</th>
<th>with in-order</th>
<th>with ooo</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD R1, R2, R3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>ADD R4, R1, R2</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>LW R5, 8(R4)</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>ADD R7, R6, R5</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>ADD R8, R7, R5</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>LW R9, 16(R4)</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>ADD R10, R6, R9</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>ADD R11, R10, R9</td>
<td>14</td>
<td>10</td>
</tr>
</tbody>
</table>
Cache Hierarchies

• Data and instructions are stored on DRAM chips – DRAM is a technology that has high bit density, but relatively poor latency – an access to data in memory can take as many as 300 cycles today!

• Hence, some data is stored on the processor in a structure called the cache – caches employ SRAM technology, which is faster, but has lower bit density

• Internet browsers also cache web pages – same concept
Memory Hierarchy

- As you go further, capacity and latency increase
Locality

• Why do caches work?
 ▪ Temporal locality: if you used some data recently, you will likely use it again
 ▪ Spatial locality: if you used some data recently, you will likely access its neighbors

• No hierarchy: average access time for data = 300 cycles

• 32KB 1-cycle L1 cache that has a hit rate of 95%:
 average access time = 0.95 \times 1 + 0.05 \times (301) = 16 cycles
Accessing the Cache
Accessing the Cache

Direct-mapped cache: each address maps to a unique location in cache

Byte address

101000

Offset

Data array

Sets

8-byte words

8 words: 3 index bits
The Tag Array

Direct-mapped cache: each address maps to a unique address

Tag array

Data array

Byte address

Tag

Compare

101000

8-byte words