Midterns on the table

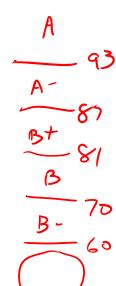
Lecture 18: Pipelining

Last names: A-D E-L M-R 5-Z

(for the most part)

• Today's topics:

- Power and energy
- 5-stage pipeline
- Hazards
- Data dependence handling with bypassing
- Data dependence examples


Email me if your midtern Score on Canvas is zero!!

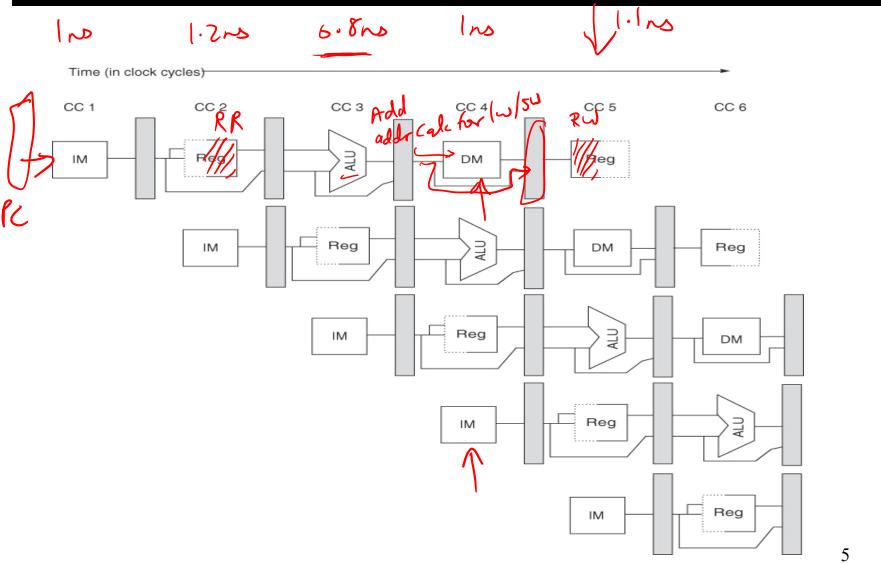
> HW7 posked later today

Midterm Notes

240 43 45

• Grade categories:

- Common mistakes:
 - Support for subtraction: not including the carry
 - IEEE 754 floating point formats and addition
 - Addition of signed numbers
 - − Logic gates, Sum-of-products
 - MARS variables, syscalls
 - − Power and energy !!! ←



Power and Energy

Power and Energy

A 5-Stage Pipeline

Cycle time = 1.2ms

Performance Improvements?

Does it take longer to finish each individual job?

• Does it take shorter to finish a series of jobs?

Yes, before of paralle

- What assumptions were made while answering these questions?
 - No dependences between instructions
 - Easy to partition circuits into uniform pipeline stages
 - No latch overhead

5x inpo

ideal cond

• Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

Cooly from upppelined to pipelined

- As a result of pipelining:
- Time in ns per instruction goes up becoz of latch orbid

 Each instruction takes more cycles to execute definish cycle has

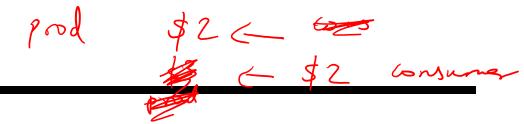
 But average CPI remains roughbath. Sound $\leq >$ Time in ns per instruction goes up

 - > But... average CPI remains roughly the same
 - Clock speed goes up
 - Total execution time goes down, resulting in lower average time per instruction
 - Under ideal conditions, speedup
 - = ratio of elapsed times between successive instruction completions
 - = number of pipeline stages = increase in clock speed

Hazards

- Structural hazards: different instructions in different stages (or the same stage) conflicting for the same resource
- Data hazards: an instruction cannot continue because it needs a value that has not yet been generated by an earlier instruction
- Control hazard: fetch cannot continue because it does not know the outcome of an earlier branch – special case of a data hazard – separate category because they are treated in different ways

Conflicts/Problems


IM DM

- I-cache and D-cache are accessed in the same cycle it helps to implement them separately
- Registers are read and written in the same cycle easy to deal with if register read/write time equals cycle time/2
- Instructions can't skip the DM stage, else conflict for RW
- Consuming instruction may have to wait for producer
- Branch target changes only at the end of the second stage
 -- what do you do in the meantime?

Structural Hazards

- Example: a unified instruction and data cache
 stage 4 (MEM) and stage 1 (IF) can never coincide
- The later instruction and all its successors are delayed until a cycle is found when the resource is free → these are pipeline bubbles
- Structural hazards are easy to eliminate increase the number of resources (for example, implement a separate instruction and data cache, add more register ports)

Data Hazards

- An instruction *produces* a value in a given pipeline stage
- A subsequent instruction consumes that value in a pipeline stage
- The consumer may have to be delayed so that the time of consumption is later than the time of production

• Show the instruction occupying each stage in each cycle (no bypassing) if I1 is $R1+R2 \rightarrow R3$ and I2 is $R3+R4 \rightarrow R5$ and I3 is $R7+R8 \rightarrow R9$								
CYC-1	CYC-2	CYC-3	CYC-4	CYC-5	CYC-6	CYC-7	CYC-8	
IF I1	IF I2	IF I3	IF I3	IF T3	IF	IF	IF	CP1 = 5
D/R	D/R I1	D/R//	D/R/	D/R/	D/R I3	D/R	D/R	= 5
ALU	ALU	ALU I1	ALU	ALU	ALU IZ	ALU I3	ALU	1PC = 0.6 = 3
DM	DM	DM	DM II	DM O	DM ()	DM T2	DM T3	5
				1/1				0.

RW

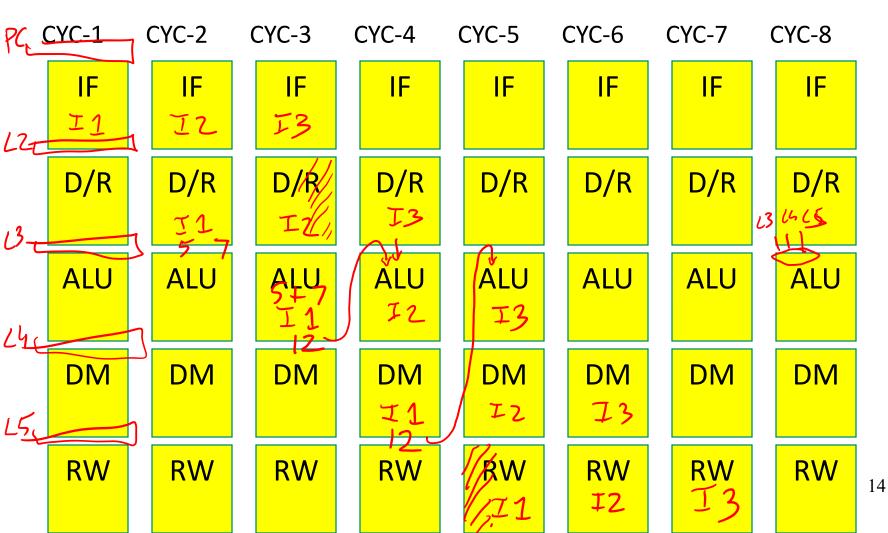
RW

RW

RW

RW

RW

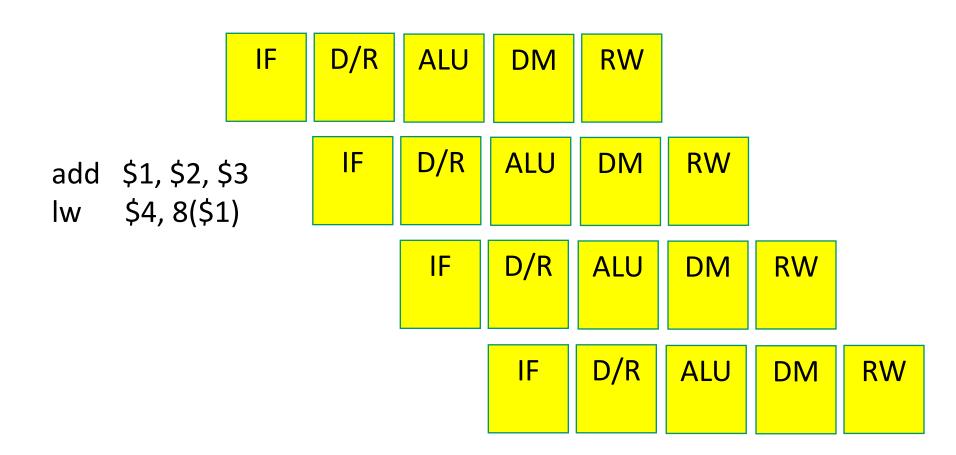

Example 1 – No Bypassing

• Show the instruction occupying each stage in each cycle (no bypassing) if I1 is R1+R2 \rightarrow R3 and I2 is R3+R4 \rightarrow R5 and I3 is R7+R8 \rightarrow R9

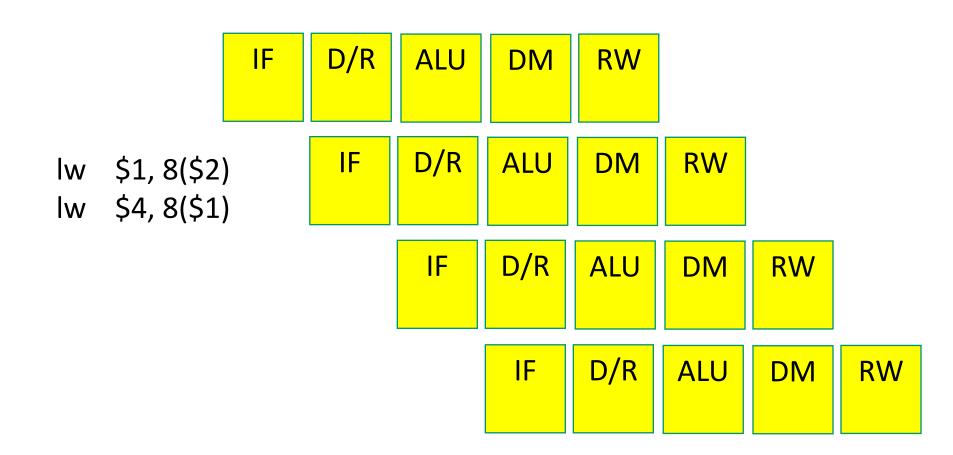
II II IS NI INZ 7 NO WING IZ IS NOTH 7 NO WING IS IS NOT NO 7 NO							
CYC-1	CYC-2	CYC-3	CYC-4	CYC-5	CYC-6	CYC-7	CYC-8
IF 11	IF						
l1	12	13	13	13	14	15	
D/R	D/R	D/R	D/R	D/R	D/R	D/R	D/R
	l1	12	12	12	13	14	
ALU	ALU	ALU	ALU	ALU	ALU	ALU	ALU
		I1			12	13	
DM	DM	DM	DM	DM	DM	DM	DM
			l1			12	13
RW	RW	RW	RW	RW	RW	RW	RW
				11			12

Example 2 – Bypassing

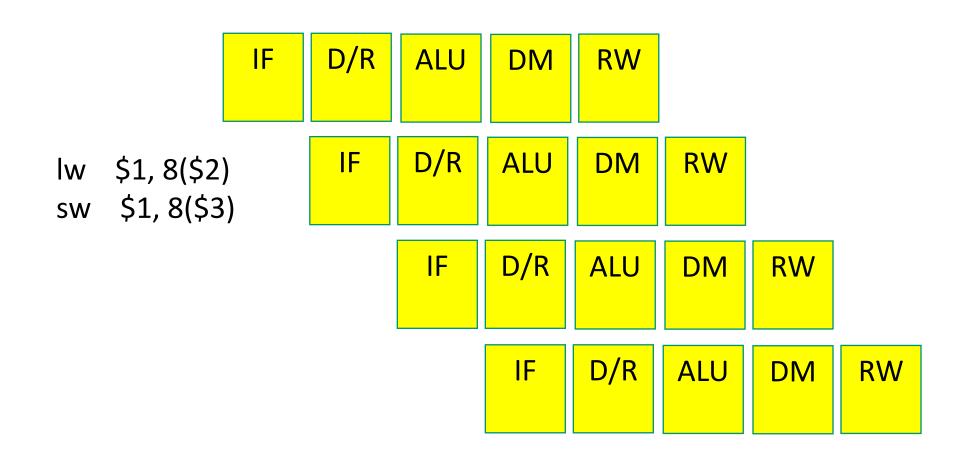
• Show the instruction occupying each stage in each cycle (with bypassing) if I1 is R1+R2→R3 and I2 is R3+R4→R5 and I3 is R3+R8→R9. Identify the input latch for each input operand.



Example 2 – Bypassing


Show the instruction occupying each stage in each cycle (with bypassing) if I1 is R1+R2→R3 and I2 is R3+R4→R5 and I3 is R3+R8→R9.
 Identify the input latch for each input operand.

CYC-1	CYC-2	CYC-3	CYC-4	CYC-5	CYC-6	CYC-7	CYC-8
IF I1	IF I2	IF I3	IF I4	IF I5	IF	IF	IF
D/R	D/R I1	D/R I2 L3 L3	D/R 13 L4 L3	D/R I4 L5 L3	D/R	D/R	D/R
ALU	ALU	ALU I1	ALU 12	ALU I3	ALU	ALU	ALU
DM	DM	DM	DM I1	DM I2	DM I3	DM	DM
RW	RW	RW	RW	RW I1	RW I2	RW I3	RW


Problem 1

Problem 2

Problem 3

