Lecture 17: Basic Pipelining

e Today’s topics:

= 5-stage pipeline
" Hazards

Multi-Stage Circuit

[

Wl
M

Pc
R

PC

P peline_

e |Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into

multiple stages, each separated by a latch

2
W

L2

=

b
S 3

L3
> |16)

Reg
File

L5
202

—

The Assembly Line

Unpipelined

Start and finish a job before moving to the next

| Comr

—
24 A

| (er
reak the job into smaller stages & /.
/ 3)& \W<v

Pipelined

Performance Improvements?

e Does it take shorter to finish a series of jobs?

16S
e What assum ptlons were made whlle ans
questions? |desl conodihm —

e |s a 10-stage pipeline better than a 5-stage pipeline?

?mkm +1 $17e—

RAW opmune/ T2 e 317+

A 5-Stage Pipeline

Time (in clock cyclesy M KO\‘

n
L cc2 o ccs
Il "

M — Res >3
Tnste U E— —
Mer

Source: H&P textbook >

D
A 5-Stage Pipeline Df P‘yom

¢

i
Use the PC to access the I-cache and increment PC by 4) it
ALY e
Time (in clock cyclesy

¢l L ’('(1,

CC 1

we, .
P M l/J: Reg &
LT E— A
> fcrl

Pe m\%

?
+
S
—(—
(o2
~
Z
L i
| 3
i L\“" /

A 5-Stage Pipeline

Time (in clock cyclesy

Read

e
b\/.,o

“e

> R4 happens

¢

s, compare registers compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take moreJ

CC 4

CcC1 cCcz
1A U [Reg
I\
{ /
| /
. .

~
L

F

Reg

lﬂ

Lkl

llf of

51 et

E

A 5-Stage Pipeline > $t1 p(st2)

ALU computation, effective address computation for load/store

Time (in clock cyclesy :I‘:{j’?' “— <
CcC1 cCc 2z cC CcC 4 CC 5 CcCe
 Reg | T :
I Reg >§ TP\ Reg
...... 1 $ r
1M J '— Reg [Q DM —‘ Reg
T FJ

I

Z

7

3

|m

Ey
H Lij

A 5-Stage Pipeline

W /sw

Memory access to/from data cache, stores finish in 4 cycles

Time (in clock cyclesy

CC 1

cCc 2

i

CC 6

sl =
[{_ I
| ,—: V
I '_Fl;
|| faeees 1

I

E

Write result of ALU computation or load into register file

Time (in clock cyclesy

CC 1

cCc 2

i

DM

~
L

CC 6

I

E

10

Pipeline Summary

Jﬂ% ALU DM RW

ADD R1,R2, > R3 RdR1,R2 R1+R2 Q Wr R3

I

> BEQ R1,R2,1 RdR1,R2 \- - _

Compare, Set PC

LD 8[R3] %@ Rd R3 R3+8 Getdata WrR6

— —

ST 8[R3] é RdR3,R6 R3+8 Wr data @
R3] <R

11

Performance Improvements?

e Does it take longer to finish each individual job?
e Does it take shorter to finish a series of jobs?

e What assumptions were made while answering these

guestions?
— No dependences between instructions
— Easy to partition circuits into uniform pipeline stages
— No latch overhead

e |s a 10-stage pipeline better than a 5-stage pipeline?

12

Quantitative Effects

e As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPl remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed

13

Conflicts/Problems

e |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

e Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

e Branch target changes only at the end of the second stage
-- what do you do in the meantime?

14

Hazards

e Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

e Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

e Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

15

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

