Lecture 13: ALUs, Adders

e Today’s topics:

. a)v('ﬁy\ o
= ALU wrap-up
= Carry-lookahead adder

Thas < FSMs — eawpl probs
L‘?h@dkm/o«k]wj;;MFSNI
Mid lon. - inel e,u)—?ﬂna/ umhl Thas 2/2}
On Tt « omad! prachice neadiorm G
D slads of demmboms Poges (Aonk +Ladc>*$22t“
_ Caladoms ok (0rl2rzt)y oo
lwe 7 Rewvtems 5e8351m >

ralign 2

1

>
1-Bit ALU with Add, Or, And (e[e —1
™

-_— e

e Multiplexor selects between Add, Or, And operations
00 owlpdt = AND

ALD Operation = ol pwh= OR
Carryln = 10 ot = ADD
a —e—» (-V_\
0

._
1 » Result

Y
CarryOut Source: H&P textbook 2

32-biERippIe Carry Adder

AMD ﬁ‘tL) i‘t‘D) ,&(‘tl -| € s Qperation
Carryln = © € odd C
g7 ’m = ? S-to32
e ‘f‘ b | D
\9 a0\l Carryin KCanQ
1-bit ALUs are cemnected b0 C:‘rt;"gut =+ Resulto J/
“in series” with the B
carry-out of 1 box x)/ 1 o
going into the carry-in e - Resull |~
f the next b | camyo o
of the next box arryOut 225
a2 | Carryln 3(2
ALU2 = Result2
DE—e CarryOut %S
|
a31—,| Carryln
b31__s ALU31 » Result31 3

Source: H&P textbook

Incorporating Subtraction (-5

Lb—> -b 7

gbl -I’\ m Operation
= Z

—T____,—-/ Carryin

d &

Y

D)

0

Must invert bits of Band add a 1
e Include an inverter
e Carryln for the first bit is 1 .
e The Carryln signal (for the @ 1 =Sl
first bit) can be the same
as the Binvert signal b

g

CarryOut
Source: H&P textbook

4

Incorporating NOR and NAND 2.5 = arb =neR

Ainvert
Binvert

(J—

a ti' = a-b =N
Operation

Carryln

.—
é d) 1 » Result
1 +

CarryOut 5
Source: H&P textbook

Control Lines o+ b

What are the values

. ALL operation
of the control lines

and what operations
do they correspond to?

y
y:

Ai Bp
AND 0 O
OR 0 0
Add 0 0
sub 0 1
NAND 1 1
NOR 1 1

5

Fero

Result

IO'O
(@)

> ALU

Overflow

Jo

[ERY
o

b —

01 = oR L;J:bh\'
00 ¢

CarryOut

Source: H&P textbook

slt $to, bti ¢t 2 [t)
) (
:) < o2, .. 00
Incorporating slt = (e fhae & D odpd ©° —ito
else = om.‘r»d' D6pDo - ... 00
Ainvert Operation
EPerform a—b and check | Bwert carryn |
the sign y . /-;\ _ /DL\'
v >
e New signal (Less) tha’?@ .] |
is zero for ALU boxes 1
1-31 ¢
O/) o) I *7 ~ Result
e The 315t box has a unit ()=, ° ﬂ I
to detect overflow and - :
sign — the sign bit .
serves as the Less o Less ﬂ\@;i AN
signal for the 0t box O - Set
“ao ¥] ¥ I
SIS A e - o
Q' —
7

Source: H&P textbook

Incorporating beq

Bnegate Operation
Ainvert

1N

¢ Perform a—b and il Gl | o
confirm that the b0 — i:gg —
result is all zero’s CarryOut

.
Ll Y l

al— Carryln Frasiitd
bl —»{ ALU1 oS
0 — Less
CarryOut Zero
J‘ 9 Y Y 1 ’(‘F
a2—= Carryln
b2—» ALU2 | TesulZ . NoR a-b=D
0— Less
CarryQOut

11 i oo | ; f[C= Pc+y AF
| bty Zero=0
a3i—s| Carryln Result31 _[& OIF .\g
b31—= ALU31 Set fC$ fc*
0—= Less » Overflow ZM: [
8

Source: H&P textbook

Control Lines

What are the values
of the control lines
and what operations
do they correspond to?

Bnegate Operation
Ainvert ~
1RR
a0 —| Carryln
b0 ALUO Result0 | _ -
Less I,—
CarryOut
e
Ty ¥ L
al — Carryln
b1 ALU Resultt | _ - .
00— Less ;'
CarryOut ; Zero
¢ ¥ Yy v
a2 —» Carryln
o - ALU2 Result2 .
00— Less
CarryOut
s : - Carryln
L
¥ l Result31
a31i— Carryln
b31—| ALU31 Set
00— Less = Qverflow

Source: H&P textbook 9

Control Lines

What are the values
of the control lines

and what operations {
do they correspond to?
q4—=

ALL operation

Ai Bn Op
— ZEr0

AND O O 00

OR 0O 0 01 > ALU |—= Result
Add 0O 0O 10 — Overflow
Sub 0 1 10 .
NOR 1 1 00
NAND 1 1 01

SLT 0 1 11

BEQ 0 1 10 CarryOut

Source: H&P textbook

PIND oR

] Qb + Q@ + }3(\(
Speed of Ripple Carry "?J :

> 2 Colm ﬁl

e The carry propagates thru every 1-bit box: each 1—bitﬁﬁxequentially
\V/

implements AND and OR — total delay is the time to gotHrough 64 gates!
e (2,2°) 3zL ADBD

* We've already seen that any logic equation can be expressed as the = g[l
sum of products — so it should be pofble to compute the result by 107\c

¥ e Rc(4,%) Tk,

going through only 2 gates! inrw"‘
T4 Sey gL

e
e Caveat: need many parallel gates and each gate may have a very
large number of inputs — it is difficult to efficiently build such large

gates, so we'll find a compromise: a,a, .4y, bobi-- . [33' doch.
= moderate number of gates -
= moderate number of inputs to each gate L4
= moderate number of sequential gates traversed 72 WS
::_> P{Np:'> OR Sun 4 parw' ol

éq Z“’l\ A? C_? (m]/\—m .

Computing CarryOut

Carrylnl = b0.CarryInO + a0.CarryInO + a0.b0

Carryin2 = b1. Carrylnl +al.Carrylnl +al.bl
<b1.b0.c0 + b1.20.cO + b1.a0.b0 +

al.b0.cO + al.a0.cO + al.a0.b0 + al.bg

Carryln32 = a really large sum of really large products

Cpo lermsg (Sun - of }7""0'\

e Potentially fast implementation as the result is computed

by going thru just 2 levels of logic — unfortunately, each
gate is enormous and slow

12

Generate and Propagate

Equation re-phrased:
Ci+l =ai.bi+ai.Ci+bi.Ci <—
= (ai.bi) + (ai + bi).Ci
m E; Oropar-te
Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if eitheris 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

13

Generate and Propagate z) >

ko

= 1.¢c1¢ e e
Cc=gl+pl.cl *~<’<=-./>

c3=g2 + p2.g1 + p2.p1.g0 + p2.p1.p0.c0O
c4 = g3+p392+p3p291+p3p2p1 .90 + p3.p2.p1.p0.c0

= U /] T

C3) 3\«3%
Either,

a carry was just generated, or \

a carry was generated in the |z

a carry was generated two step
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages

and was propagated by both

14

Divide and Conquer

e The equations on the previous slide are still difficult to implement
as logic functions — for the 32" bit, we must AND every single
propagate bit to determine what becomes of cO (among other
things)

e Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

e For example, to add 32 numbers, you can partition the task as

AN AN AN AN

15

P and G for 4-bit Blocks

e Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
PO =p0.pl.p2.p3
GO=g3+g2.p3+gl.p2.p3 +g0.pl.p2.p3

e Carry out of the first group of 4 bits is
C1 =G0+ PO0.cO
C2=G1+P1.GO + P1.PO.cO
C3=G2+(P2.G1) + (P2.P1.GO) + (P2.P1.P0.c0)
C4=G3+ (P3.G2) + (P3.P2.G1) + (P3.P2.P1.G0) + (P3.P2.P1.P0.c0)

ow“n owk e [baT

e By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of
gates (equal to the height of the tree)

16

Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 111 1111 1111 1011

P@@EJO
Goo% 0

C4 =1

_’

1€ b ‘\avab

17

Trade-Off Curve

»
»

Truth table
sum-of-products adder, (2, 2%4)
r—

A

Performance

[

sequential gates

gp adder (3, 33)

#inputs to each gate

Carry Lookahead GP adder (7, 5)

® ARippIe-Carry
adder (64, 2)

——

sequential gates

18

Carry Look-Ahead Adder

e 16-bit Ripple-carry
takes 32 steps

e This design takes
how many steps?
4 sequential steps

Carryin

|

v
ald —= Carryln
b0 —
al —=
b1 —
a2 —=| ALUO
b2 —= PO —— pi
a3 —» | ai
b3 GO ai

C1

17 ci+1

= Result0—3

Carry-lookahead unit

e pf+1

—— gi+1

c2

17 ci+2

= Result4—7

— pi+2

— gi+2

c3
l— ci+3

a4 —= Carryln
bd —
as —#
b5 —=
a6 —={ ALU1
b6 —= P1
a’l —

1
b7— __ C
a8 —= Carryln
b8 —=
a9 —»=
b9 —
al0—= ALUZ2
b10 —= P2
all —
b11 — B2
al2 —= Garryin
b12 —=
al3 —=
b13 —
al4 — ALU3
b14 —= P3
alb—=
b15 — &3

Result8—11

s pi+3

— = gl‘+3

C4

hl.:f'«:—cl

CarryOut

Result12-15

Source: H&P textbook

19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

