Lecture 12: Hardware for Arithmetic

- Today's topics:
 - Digital logic intro
 - Logic for common operations
 - Designing an ALU

• Two voltage levels – high and low (1 and 0, true and false) Hence, the use of binary arithmetic/logic in all computers

- A logic block has a number of binary inputs and produces a number of binary outputs – the simplest logic block is composed of a few transistors
- A logic block is termed *combinational* if the output is only a function of the inputs

FINITE STATE MACHINES

- A logic block is termed sequential if the block has some internal memory (state) that also influences the output
- A basic logic block is termed a *gate* (AND, OR, NOT, etc.)

We will only deal with combinational circuits today

Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs A, B, C and an output E that is true only if *exactly* 2 inputs are true 1
 2 × 1 × 2 = 5

Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs A, B, C and an output E that is true only if *exactly* 2 inputs are true

Α	В	С	E	
0	0	0	0	
0	0	1	0	
0	1	0	0	
0	1	1	1	
1	0	0	0	Can be compressed by only
1	0	1	1	representing cases that
1	1	0	1	have an output of 1
1	1	1	0	

- Equations involving two values and three primary operators:
 - OR : symbol + , X = A + B → X is true if at least one of A or B is true
 - AND : symbol . , X = A . B → X is true if both A and B are true
 - NOT : symbol $\overline{}$, X = $\overline{A} \rightarrow X$ is the inverted value of A $A' = \overline{A}$

Boolean Algebra Rules

C = A + B

- Zero and One laws : A + 1 = 1; $A \cdot 0 = 0$
- Inverse laws : $A \cdot A \neq 0$; A + A = 1
- Commutative laws : A + B = B + A ; A . B = B . A

ſ

- Associative laws : A + (B + C) = (A + B) + C
 A . (B . C) = (A . B) . C
- Distributive laws : A . (B + C) = (A . B) + (A . C)
 A + (B . C) = (A + B) . (A + C)

DeMorgan's Laws

•
$$\overline{A} + \overline{B} = \overline{A} \cdot \overline{B}$$

NOR MODOFIN
• $\overline{A} \cdot \overline{B} = \overline{A} + \overline{B}$
NOR DR of inv

• Confirm that these are indeed true

• Consider the logic block that has an output E that is true only if exactly two of the three inputs A, B, C are true

Multiple correct equations:

Two must be true, but all three cannot be true: $E = ((A \cdot B) + (B \cdot C) + (A \cdot C)) \cdot (A \cdot B \cdot C)$

Identify the three cases where it is true: $E = (A \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{B}) + (C \cdot B \cdot \overline{A})$

- Can represent any logic block with the AND, OR, NOT operators
 - Draw the truth table
 - For each true output, represent the corresponding inputs as a product Sum of Producte
 - The final equation is a sum of these products

- $(A \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{B}) + (C \cdot B \cdot \overline{A})$
- Can also use "product of sums"
- Any equation can be implemented with an array of ANDs, followed by an array of ORs Product of Sums

(A+B+). (A+B+C). (

- NAND : NOT of AND : A nand B = A . B
- NOR : NOT of OR : A nor B = A + B
- NAND and NOR are *universal gates*, i.e., they can be used to construct any complex logical function

Common Logic Blocks – Decoder

S=1 C= A.0+ B.1 Common Logic Blocks – Multiplexor =B 5=0 C= A.1+B.0 A • Multiplexor or selector: one of N inputs is reflected on the output depending on the value of the log₂N selector bits C = (A.S) + (B.S)А Μ В S S Source: H&P textbook 4-to-1 Z sclector bits 2-input mux 2-10-1 Selector

14

Adder Algorithm

Λ

Truth Table for the above operations:

Carry Out Logic

Arith + Logical Unit 1-Bit ALU with Add, Or, And

• Multiplexor selects between Add, Or, And operations

32-bit Ripple Carry Adder

1-bit ALUs are connected "in series" with the carry-out of 1 box going into the carry-in of the next box

19

Incorporating Subtraction

Must invert bits of B and add a 1

- Include an inverter
- CarryIn for the first bit is 1
- The CarryIn signal (for the first bit) can be the same as the Binvert signal

Source: H&P textbook

Incorporating NOR and NAND

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Ор
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
NAND	1	1	01
NOR	1	1	00

