Lecture 11: Floating Point, Digital Design

• Today’s topics:
 - FP formats, arithmetic
 - Intro to Boolean functions
Value inf
Value NAN
Highest value $\sim 2 \times 2^{127}$

Value 1

Smallest Norm $\sim 2 \times 2^{-126}$
Largest Denorm $\sim 1 \times 2^{-126}$
Smallest Denorm $\sim 2^{-149}$
Value 0

2 special cases up top that use the reserved exponent field of 255

Exponent field < 127, i.e., after subtracting bias, they are negative exponents, representing numbers < 1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers
Example 2

Final representation: \((-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}\)

- Represent \(36.90625_{\text{ten}}\) in single-precision format

\[
\begin{align*}
36 / 2 &= 18 \text{ rem } 0 & 0.90625 \times 2 &= 1.81250 \\
18 / 2 &= 9 \text{ rem } 0 & 0.8125 \times 2 &= 1.6250 \\
9 / 2 &= 4 \text{ rem } 1 & 0.625 \times 2 &= 1.250 \\
4 / 2 &= 2 \text{ rem } 0 & 0.25 \times 2 &= 0.50 \\
2 / 2 &= 1 \text{ rem } 0 & 0.5 \times 2 &= 1.00 \\
1 / 2 &= 0 \text{ rem } 1 & 0.0 \times 2 &= 0.0
\end{align*}
\]

- 36 is 100100
- 0.90625 is 0.1110100...0
Example 2

Final representation: $(-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}$

We’ve calculated that $36.90625_{\text{ten}} = 100100.1110100...0$ in binary
Normalized form = $1.001001110100...0 \times 2^5$
 (had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is $001001110100...0$ (the 23 bits after the point)
The exponent field is $5 + 127$ (have to add the bias) = 132,
 which in binary is 10000100

The IEEE 754 format is $0 \ 10000100 \ 001001110100.....0$
 sign exponent 23 fraction bits
Examples

Final representation: \((-1)^S \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}\)

• Represent \(-0.75_{10}\) in single and double-precision formats

 Single: \((1 + 8 + 23)\)

 Double: \((1 + 11 + 52)\)

 Remember:

 \[
 \begin{array}{c}
 \text{True exponent} \\
 \text{Exponent in register}
 \end{array}
 \]
 \[
 \begin{array}{c}
 +127 \\
 -127
 \end{array}
 \]

• What decimal number is represented by the following single-precision number?
 \[
 1 1000 0001 01000...0000
 \]
Examples

Final representation: $$(-1)^{S} \times (1 + \text{Fraction}) \times 2^{(\text{Exponent} - \text{Bias})}$$

- Represent $$-0.75_{\text{ten}}$$ in single and double-precision formats

 Single: $$(1 + 8 + 23)$$
 $$\begin{array}{c}
 1 \\
 011111101000...000
 \end{array}$$

 Double: $$(1 + 11 + 52)$$
 $$\begin{array}{c}
 1 \\
 0111111111101000...000
 \end{array}$$

- What decimal number is represented by the following single-precision number?
 $$\begin{array}{c}
 1 \\
 1000000101000...0000
 \end{array}$$
 $$-5.0$$
FP Addition

Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

\[9.999 \times 10^1 + 1.610 \times 10^{-1} \]

Convert to the larger exponent:

\[9.999 \times 10^1 + 0.016 \times 10^1 \]

Add

\[10.015 \times 10^1 \]

Normalize

\[1.0015 \times 10^2 \]

Check for overflow/underflow

Round

\[1.002 \times 10^2 \]

Re-normalize
FP Addition

• Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

\[9.999 \times 10^1 + 1.610 \times 10^{-1} \]

Convert to the larger exponent:
\[9.999 \times 10^1 + 0.016 \times 10^1 \]

Add
\[10.015 \times 10^1 \]

Normalize
\[1.0015 \times 10^2 \]

Check for overflow/underflow

Round
\[1.002 \times 10^2 \]

Re-normalize

If we had more fraction bits, these errors would be minimized.
FP Addition – Binary Example

• Consider the following binary example

\[1.010 \times 2^1 + 1.100 \times 2^3 \]

Convert to the larger exponent:

\[0.0101 \times 2^3 + 1.1000 \times 2^3 \]

Add

\[1.1101 \times 2^3 \]

Normalize

\[1.1101 \times 2^3 \]

Check for overflow/underflow

Round

Re-normalize

IEEE 754 format: 0 10000010 1101000000000000000000000000000
FP Multiplication

• Similar steps:
 ▪ Compute exponent (careful!)
 ▪ Multiply significands (set the binary point correctly)
 ▪ Normalize
 ▪ Round (potentially re-normalize)
 ▪ Assign sign
MIPS Instructions

• The usual add.s, add.d, sub, mul, div

• Comparison instructions: c.eq.s, c.neq.s, c.lt.s.... These comparisons set an internal bit in hardware that is then inspected by branch instructions: bc1t, bc1f

• Separate register file $f0 - $f31 : a double-precision value is stored in (say) $f4-$f5 and is referred to by $f4

• Load/store instructions (lwc1, swc1) must still use integer registers for address computation
Code Example

```c
float f2c (float fahr)
{
    return ((5.0/9.0) * (fahr – 32.0));
}

(argument fahr is stored in $f12)
lwc1 $f16, const5
lwc1 $f18, const9
div.s $f16, $f16, $f18
lwc1 $f18, const32
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra
```
Fixed Point

• FP operations are much slower than integer ops

• Fixed point arithmetic uses integers, but assumes that every number is multiplied by the same factor

• Example: with a factor of 1/1000, the fixed-point representations for 1.46, 1.7198, and 5624 are respectively 1460, 1720, and 5624000

• More programming effort and possibly lower precision for higher performance
Subword Parallelism

- ALUs are typically designed to perform 64-bit or 128-bit arithmetic

- Some data types are much smaller, e.g., bytes for pixel RGB values, half-words for audio samples

- Partitioning the carry-chains within the ALU can convert the 64-bit adder into 4 16-bit adders or 8 8-bit adders

- A single load can fetch multiple values, and a single add instruction can perform multiple parallel additions, referred to as subword parallelism
Digital Design Basics

• Two voltage levels – high and low (1 and 0, true and false) Hence, the use of binary arithmetic/logic in all computers

• A transistor is a 3-terminal device that acts as a switch
Logic Blocks

- A logic block has a number of binary inputs and produces a number of binary outputs – the simplest logic block is composed of a few transistors.

- A logic block is termed *combinational* if the output is only a function of the inputs.

- A logic block is termed *sequential* if the block has some internal memory (state) that also influences the output.

- A basic logic block is termed a *gate* (AND, OR, NOT, etc.).

We will only deal with combinational circuits today.
Truth Table

• A truth table defines the outputs of a logic block for each set of inputs

• Consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
</table>

A truth table defines the outputs of a logic block for each set of inputs.

Consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true.

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Can be compressed by only representing cases that have an output of 1.
Boolean Algebra

- Equations involving two values and three primary operators:
 - OR: symbol +, $X = A + B \Rightarrow X$ is true if at least one of A or B is true
 - AND: symbol ., $X = A \cdot B \Rightarrow X$ is true if both A and B are true
 - NOT: symbol $\overline{}$, $X = \overline{A} \Rightarrow X$ is the inverted value of A
Boolean Algebra Rules

• Identity law : \(A + 0 = A \); \(A \cdot 1 = A \)

• Zero and One laws : \(A + 1 = 1 \); \(A \cdot 0 = 0 \)

• Inverse laws : \(A \cdot \bar{A} = 0 \); \(A + \bar{A} = 1 \)

• Commutative laws : \(A + B = B + A \); \(A \cdot B = B \cdot A \)

• Associative laws : \(A + (B + C) = (A + B) + C \)
 \(A \cdot (B \cdot C) = (A \cdot B) \cdot C \)

• Distributive laws : \(A \cdot (B + C) = (A \cdot B) + (A \cdot C) \)
 \(A + (B \cdot C) = (A + B) \cdot (A + C) \)
DeMorgan’s Laws

- \(A + B = A \cdot B \)
- \(A \cdot B = A + B \)

- Confirm that these are indeed true