Lecture 9: Addition, Multiplication & Division

• Today's topics:

HW-3 due in 36 hrs 1

- Addition
- Multiplication
- Division

signed 1....-ve Mar 2nd - midterm ansigned - tre

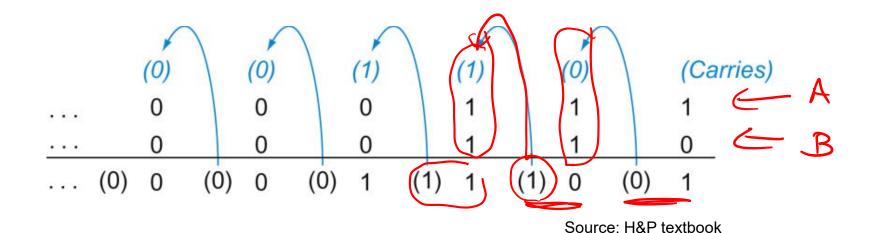
on Hw-4 posted later today

Next Pm/Fri

Ve

Addition and Subtraction

- Addition is similar to decimal arithmetic
- For subtraction, simply add the negative number hence, subtract A-B involves negating B's bits, adding 1 and A



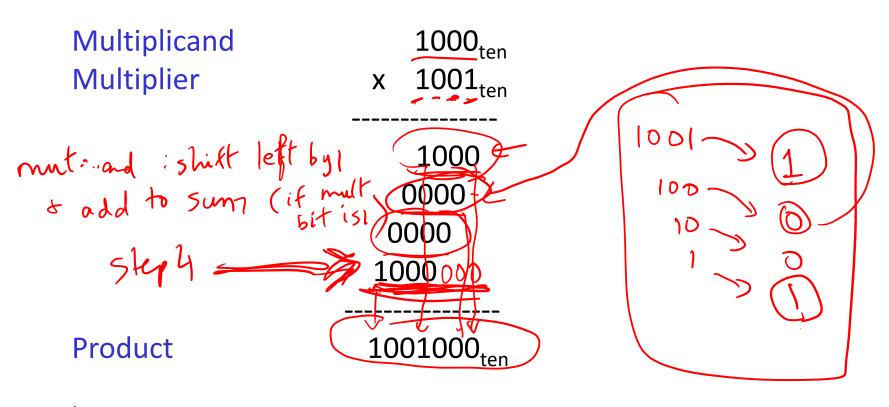
Overflows

- For an unsigned number, overflow happens when the last carry (1) cannot be accommodated
- For a signed number, overflow happens when the most significant bit is not the same as every bit to its left
 - when the sum of two positive numbers is a negative result
 - when the sum of two negative numbers is a positive result
 - The sum of a positive and negative number will never overflow
- MIPS allows addu and subu instructions that work with unsigned integers and never flag an overflow – to detect the overflow, other instructions will have to be executed

Multiplication Example

0000

10000



In every step

- multiplicand is shifted left
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

10 p

HW Algorithm 1 logic 1000 Multiplicand Multiplicand Shift left 64 bits Shift fto hi The state of the s

Multiplier

32 bits

Control test

Shift right

Source: H&P textbook

multiplicand is shifted

In every step

000

64-bit ALU

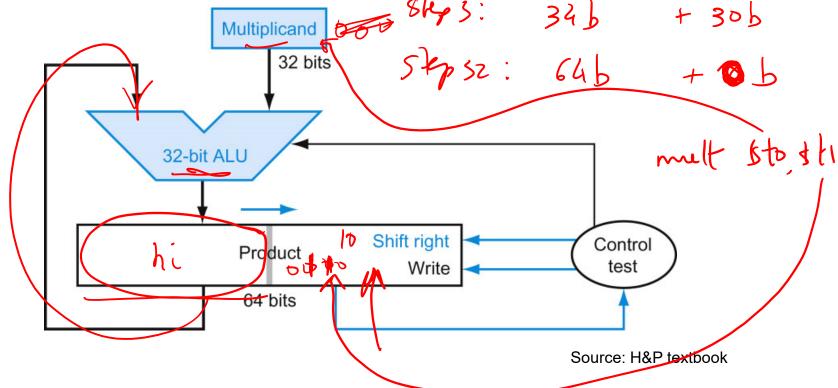
Product

64 bits

- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

HW Algorithm 2

+ 305 Multiplicand 66



- 32-bit ALU and multiplicand is untouched
- the sum keeps shifting right
- at every step, number of bits in product + multiplier = 64, hence, they share a single 64-bit register

Notes

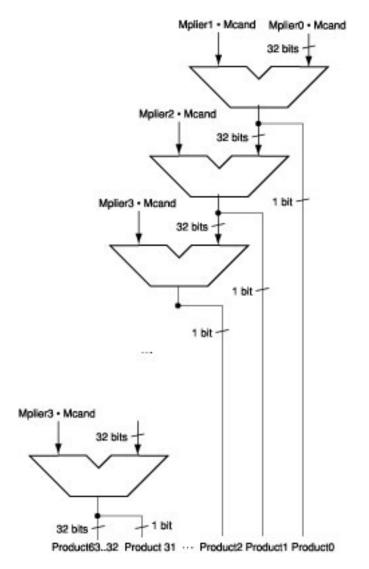
- The previous algorithm also works for signed numbers (negative numbers in 2's complement form)
- We can also convert negative numbers to positive, multiply the magnitudes, and convert to negative if signs disagree
- The product of two 32-bit numbers can be a 64-bit number
 -- hence, in MIPS, the product is saved in two 32-bit
 registers

MIPS Instructions

mult	\$s2, \$s3	computes the product and stores it in two "internal" registers that can be referred to as hi and lo
mfhi mflo	•	moves the value in hi into \$s0 moves the value in lo into \$s1

Similarly for multu

Fast Algorithm

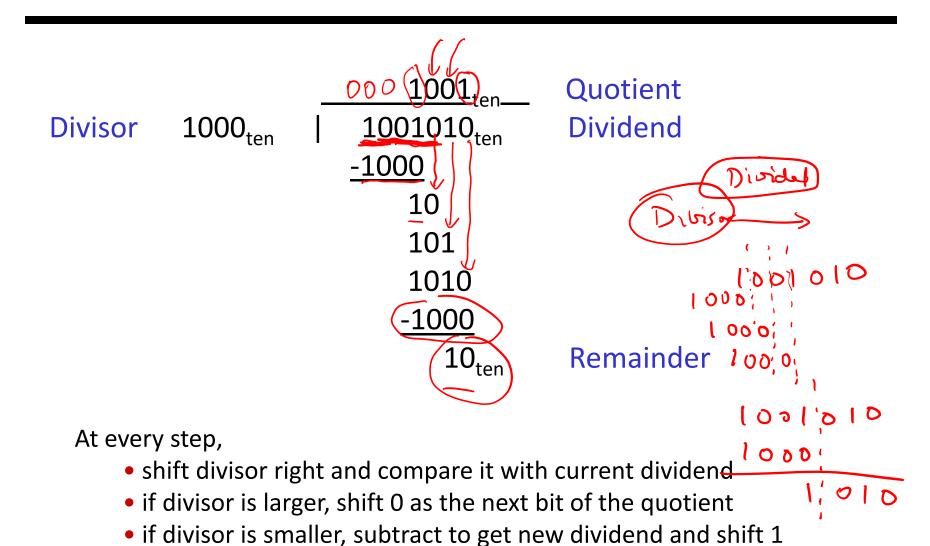


- The previous algorithm requires a clock to ensure that the earlier addition has completed before shifting
- This algorithm can quickly set up most inputs – it then has to wait for the result of each add to propagate down – faster because no clock is involved
 - -- Note: high transistor cost

9

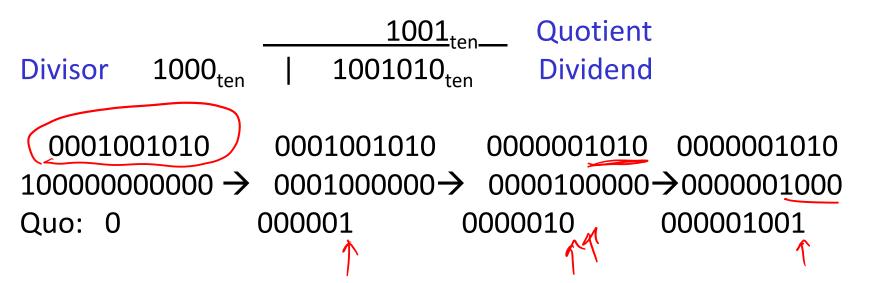
Source: H&P textbook

Division



as the next bit of the quotient

Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Divide Example

• Divide 7_{ten} (0000 0111 $_{two}$) by 2_{ten} (0010 $_{two}$)

Iter	Step	Quot	Divisor	Remainder
0	Initial values			
1				
2				
3				
4				
5				

Divide Example Rem 0000 D(1) 11100111

• Divide 7_{ten} (0000 0111 $_{two}$) by 2_{ten} (0010 $_{two}$)

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div	0000	0010 0000	1110 0111
	Rem $< 0 \rightarrow +Div$, shift 0 into Q	0000	0010 0000	0000 <u>0111</u>
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001,0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem – Div	0000	0000 0100	0000 0011
	Rem >= 0 → shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

Divisor