Lecture 9: Addition, Multiplication & Division
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Addition and Subtraction v~

e Addition is similar to decimal arithmetic

e For subtraction, simply add the negative number — hence,
subtract A-B involves negating B’s bits, adding 1 and A

0 0 0 1 ;g e— A
0 | o0 0 1) | 0o & B
0 0 () 0 (0) 1 0 (0) 1

Source: H&P textbook



Overflows I

e For an unsigned number, overflow happens when the last carry (1)

e

cannot be accommodated

e For a signed number, overflow happens when the most significant bit
. —/ . .
is not the same as every bit to its left
= when the Wumbers is a negative result
= when the sum of two negative numbers is a positive result
= The sum of a positive and negative number will never overflow

e MIPS allows addu and subu instructions that work with unsigned
integers and never flag an overflow — to detect the overflow, other
instructions will have to be executed
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Multiplication Example
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In every step

e multiplicand is shifted
e next bit of multiplier is examined (also a shifting step)
e if this bitis 1, shifted multiplicand is added to the product



HW Algorithm 2 sz 32
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e 32-bit ALU and multiplicand is untou

e the sum keeps shifting right

e at every step, number of bits in product + multiplier = 64,
hence, they share a single 64-bit register



Notes

e The previous algorithm also works for signed numbers
(negative numbers in 2’s complement form)

e We can also convert negative numbers to positive, multiply
the magnitudes, and convert to negative if signs disagree

e The product of two 32-bit numbers can be a 64-bit number
-- hence, in MIPS, the product is saved in two 32-bit
registers



MIPS Instructions

mult Ss2, Ss3

mfhi  SsO
mflo Ssi

Similarly for multu

computes the product and stores
it in two “internal” registers that
can be referred to as hi and lo

moves the value in hi into SsO
moves the value in lo into Ss1



Fast Algorithm
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e The previous algorithm
requires a clock to ensure that
the earlier addition has
completed before shifting

e This algorithm can quickly set
up most inputs — it then has to
wait for the result of each add
to propagate down — faster
because no clock is involved

-- Note: high transistor cost

Source: H&P textbook



Division
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At every step, 1650 “

e shift divisor right and compare it with current dividend :
e if divisor is larger, shift 0 as the next bit of the quotient \ ; 910
e if divisor is smaller, subtract to get new dividend and shift 1

as the next bit of the quotient 10




Division

1001
1001010

Quotient
Dividend

ten

Divisor 1000

ten | ten

e,
0001001010 0001001010 0000001010 0000001010 _I©
100000000000 = 0001000000—~> 0000100000—>0000001000

Quo: O 000001 0000010 000001001
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At every step,
e shift divisor right and compare it with current dividend
e if divisor is larger, shift 0 as the next bit of the quotient
e if divisor is smaller, subtract to get new dividend and shift 1
as the next bit of the quotient 1



Divide Example

e Divide 7
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e Divide 7, (0000 0111,,,) by 2, (0010,,,) D “\M
Iter Step Quot Divisor Remaind(ar
0 Initial values 0000 | 00100000 | 00000111
1 /| Rem = Rem — Div 0000 | 00100000 | 11100111
Rem < 0  +Div, shift 0 into Q 0000 | 00100000 | 00000111
“Shift Div right 0000 | 00010000 | 00000111
2 | Same stepsas 1 - 0000 | 00010000 | 11110111

—_—m——

0000 OOOIQOOO 0000 0111

—_—

0000 0000 1000 0000 0111

Samestepsasl 0000 0000 091;00 0000 0111
4 Rem™= Rem — Div 0000 0000 0100 0000 0011
< Rem >= 0 =» shift 1into Q 0001 0000 O]\(?O 0000 0011

. . . \
\Sh@ right 0001 0000 0010 000Q 0011

5 | Same steps as 4 (0011Q)| 0000 0001
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