Lecture 8: Number Crunching

e Today’s topics:

= MARS wrap-up

= RISC vs. CISC

* Numerical representations
= Signed/Unsigned

Syllabus Reminders

School of Computing Guidelines

Class rosters are provided to the instructor with the student's legal name as well
as "Preferred first name" (if previously entered by you in the Student Profile
section of your CIS account). While CIS refers to this as merely a preference, I
will honor you by referring to you with the name and pronoun that feels best for
you 1n class, on papers, exams, etc. Please advise me of any name or pronoun
changes (and please update CIS) so I can help create a learning environment in
which you, your name, and your pronoun will be respected.

Syllabus Reminders

Cheating policy:

Working with others on assignments 1s a good way to learn the material and is
encouraged. However, there are limits to the degree of cooperation that is
permitted. Students may discuss among themselves the meaning of homework
problems and possible approaches to solving them. Any written portion of an
assignment, however, is to be done strictly on an individual basis. Note the
School of Computing's Academic Misconduct Policy. BOTTOM LINE: You may
not copy from another student or from any other source, and you may not allow
another student to copy your work!! Any violation of the above is considered to
be cheating and will result in a reduced or a failing grade in the class. TAs will be
on the lookout for solution sets that appear very similar. Also, if your class rank
in the assignments is significantly different from your class rank in the exams,
only your rank in the exams will count towards your final grade.

Example Print Routine

. rectiued & bels = craerhlee s st =

.data a it fom e 2t 14
str: .asciiz “the answer is ” 535(%(14

text

i S\ﬂi # load immediate; 4 is the code for print_string
la Sao, str # the print_string syscall expects the string

- S =

address as the argument; la is the-instruction
to load the address of the operand (str)

syscall # MARS will now invoke syscall-4
li S\% # syscall-1 corresponds td print_inp
li Sgp, 5 # print_int expects the integeras its argument
syscall # MARS will now invoke syscall-1
e—

Example

e Write an assembly program to prompt the user for two
numbers and print the sum of the two numbers

Example

iggla
strl: .asciiz “Enter 2 numbers:”
text str2: .asciiz “The sumis”
li $vo, 4 T —
la Sao, strl
;ysgjg’s _> rea At i\f
syscall
add St0, Sv0, Szero
i $v0,5 —
syscall
add St1, SvO, Szero
li Sv674
la Sao0, str2 ,\x
syscall 2 g
i $vO,1 — f -

add Sap, St1, StO
syscall

|IA-32 Instruction Set K(§ C vs C1 >C

e Intel’s IA-32 instruction set has evolved over 20 years —

old features are preserved for software compatibility o

Vs i

e Numerous complex instructions — complicates hardware MR‘SC-
. .)

design (Complex Instruction Set Computer — CISC) =

] ce/¢
e |nstructions have different sizes, operands can be in hALa CA

registers or memory, only 8 general-purpose registers,
one of the operands is over-written

e RISC instructions are more amenable to high performance
(clock speed and parallelism) — modern Intel processors
convert IA-32 instructions into simpler micro-operations

>
L‘f\r\t 1213\ \/f"‘ﬁm

Two major formats for transferring values between registers andh memory

R

Memory: low address 45 7b 87 7f high address jA, b é [\

Endian-ness

Little-endian register: the first byte read goes in the low end of the register

Register: 7f 87 7b 45 (| 2 %(4
Most-significant bit \ Least-significant bit X

Big-endian register: the first byte read goes in the big end of the register

Register: 45 7b 87 7f
Most-significant bit \ Least-significant bit (MIPS, IBM)

Binary Representation ?j/

The bi b 7%1(“# 2 b cesdlo Z%
e The marynV 2 éffg ok
7O 3

- |

o 1011000 00010101 0010111011100111
Most significant bit Least Significar?\bitd{ B
[)< 5 | =
: O
represents the quantity ;
Q&Ox2ﬁ1x230+0x229+...+1x2° _Hz/yl
. O
e A 32-bit word can represent 232 numbers between | ©
0 and 232-1 L

.. this is known as the unsigned representation as ZD,J 0
we’re assuming that numbers are always positive b\

ASCII Vs. Binary

e Does it make more sense to represent a decimal number
in ASCII?

e Hardware to implement arithmetic would be difficult
e What are the storage needs? How many bits does it

take to represent the decimal number 1,000,000,000 in
ASCIl and in binary?

10

ASCII Vs. Binary

e Does it make more sense to represent a decimal number
in ASCII?

e Hardware to implement arithmetic would be difficult

e What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCIl and in binary? r————

In binary: 3—Ogbits (239 > 1 billion)
In ASCII: 10 characters, 8 bits per char = 80 bits
——=

11

Negative Numbers D e J

32 bits can only represent 232 numbers — if we wish to also represent
negative numbers, we can represent 23! positive numbers (incl zero)
and 23! negative numbers

0000 0000 0000 0000 0000 0000 0000 0000,,,,, = O, . SV oot
0000 0000 0000 0000 0000 0000 0000 0001, = 1,.. P
0111111111111111111111111111 1111, = 231 > 2D
1000 0000 0000 0000 0000 0000 0000 0000, = -23 —0

1000 0000 0000 0000 0000 0000 0000 0001, = ~(23! — 1) — |

1000 0000 0000 0000 0000 0000 0000 0010, = ~(23! — 2) 7
11111111111111111111 1111 1111 1110, = -2)
111111111111111111111111 11111111, =-1 7

two —_—

|

2"
N

2’s Complement YU

[

UOD\ . Y-S

———— —

0000 0000 0000 0000 0000 0000 0000 0000,,,, = 0,,,,
0000 0000 0000 0000 0000 0000 0000 0001,,,, = 1,,,
0111111111111111111111111111 1111, =231
1000 0000 0000 0000 0000 0000 0000 0000, = -231
1000 0000 0000 0000 0000 0000 0000 0001,,,, =-(231 —1)
1000 0000 0000 0000 0000 0000 0000 0010,,,, = -(23! - 2)
%1111 11111111 11111111 1111 1111 1110, = -2
1111117111111 1111 1111 1111 1111 1111, =1

two —

Why is this representation favorable?

— [-
Consider the sum of lﬂd/-z ... we get -1 Q/ 2 & 0= t7

Consider the sum of 2and -1 we get +1 —28 D 4265
This format can directly undergo addition without any conversions!

Each number represents the quantity
Xgp 231 + Xg0 230+ X9 229 + L+ x; 21 + %, 2°

13

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000, = Oy,

0000 0000 0000 0000 0000 0000 0000 0001, = 1.,

01111111 1111 1111 1111 1111 1111 1111, = 2311

1000 0000 0000 0000 0000 0000 0000 0000, = -23

1000 0000 0000 0000 0000 0000 0000 0001, = -(23! — 1)

1000 0000 0000 0000 0000 0000 0000 0010, = -(23! — 2) O |
) .\

1111 1111 1111 1111 1111111111 110, =-2 () [(|

111111111111 1111 1111 1111 1111 1111, =-1

Note that the sum of a number x and its inverted representation x’ always
a string,of 1s (-1).

... hence, can compute the negative of a number by
x=x"+1 inverting all bits and adding 1

Similarly, the sum of x and —x gives us all zeroes, with a carry of 1
In reality, x + (-x) =2" ... hence the name 2’s complement 14

Example

e Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6
Ly [oeg s
—
Iy

/
—\‘7& . ‘-/z,«/llo[’ '>/+(
—6 f T) Drp §’

15

Example

e Compute the 32-bit 2’s complement representations
for the following decimal numbers:
5, -5, -6

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1711171 11171 11171 1171 1111 11111011
-6: 1111 1111 11171 1111 11711 1111 11111010

Given -5, verify that inverting and adding 1 yields the
number 5

16

Signed / Unsigned

. ;
The hardware recognizes two formats = 4\5
unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit
just means it is a really large numbirz@ — 15— oy
signed (C declaration is signed int or just int)
-- numbers can be +/- , a1 in the MSB means the number
IS negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives

17

MIPS Instructions S, & o loag oo

Consider a comparison instruction:
slt StO, St1, Szero
and St1 contains the 32-bit number 1111 01...01

C T |

What gets stored in $t0?

sl u

MIPS Instructions

Consider a comparison instruction:
slt StO, St1, Szero
and St1 contains the 32-bit number 1111 01...01

What gets stored in $t0?

The result depends on whether St1 is a sighed or unsigned
number — the compiler/programmer must track this and
accordingly use either slt or sltu

slt StO, St1, Szero stores 1in StO
sltu StO, St1, Szero stores 0in StO

19

, 1
Sigh Extension &Mc I —— (‘_Ho;[

@‘ 53¢ 22b

e Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers — for example, when doipg an) (|
add with an immediate operand L0
Con
e The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left — known as

sign extension [é lo
So 2,, goes from 0000 0000 0000 0010 to (
0000 0000 0000 0000 0000 0000 0000 0010 v
and -2,,goes from 11111111 1111 1110 to ;?/49 /’\

111111111111111111111111 11111110 /”"{CH/{O 16

Alternative Representations

e The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

" sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

" one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

21

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

