Lecture 8: Number Crunching

Today’s topics:

- MARS wrap-up
- RISC vs. CISC
- Numerical representations
- Signed/Unsigned
Example Print Routine

.data
 str: .asciiz "the answer is "

.text
li $v0, 4 # load immediate; 4 is the code for print_string
la $a0, str # the print_string syscall expects the string
 # address as the argument; la is the instruction
 # to load the address of the operand (str)
syscall # MARS will now invoke syscall-4
li $v0, 1 # syscall-1 corresponds to print_int
li $a0, 5 # print_int expects the integer as its argument
syscall # MARS will now invoke syscall-1
Example

• Write an assembly program to prompt the user for two numbers and print the sum of the two numbers
Example

.data
str1: .asciiz "Enter 2 numbers:"
str2: .asciiz "The sum is"

.text
 li $v0, 4
 la $a0, str1
 syscall
 li $v0, 5
 syscall
 add $t0, $v0, $zero
 li $v0, 5
 syscall
 add $t1, $v0, $zero
 li $v0, 4
 la $a0, str2
 syscall
 li $v0, 1
 add $a0, $t1, $t0
 syscall
IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years – old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in registers or memory, only 8 general-purpose registers, one of the operands is over-written

• RISC instructions are more amenable to high performance (clock speed and parallelism) – modern Intel processors convert IA-32 instructions into simpler micro-operations
Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
 Register: 7f 87 7b 45
 Most-significant bit ⟵ Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
 Register: 45 7b 87 7f
 Most-significant bit ⟵ Least-significant bit (MIPS, IBM)
Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity

0 \times 2^{31} + 1 \times 2^{30} + 0 \times 2^{29} + ... + 1 \times 2^0

• A 32-bit word can represent 2^{32} numbers between 0 and $2^{32}-1$

... this is known as the unsigned representation as we’re assuming that numbers are always positive
• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
ASCII Vs. Binary

• Does it make more sense to represent a decimal number in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it take to represent the decimal number 1,000,000,000 in ASCII and in binary?
 - In binary: 30 bits \((2^{30} > 1 \text{ billion})\)
 - In ASCII: 10 characters, 8 bits per char = 80 bits
Negative Numbers

32 bits can only represent 2^{32} numbers – if we wish to also represent negative numbers, we can represent 2^{31} positive numbers (incl zero) and 2^{31} negative numbers

\[
\begin{align*}
0000 0000 0000 0000 0000 0000 0000 0000_{\text{two}} &= 0_{\text{ten}} \\
0000 0000 0000 0000 0000 0000 0000 0001_{\text{two}} &= 1_{\text{ten}} \\
\text{...} \\
0111 1111 1111 1111 1111 1111 1111 1111_{\text{two}} &= 2^{31}-1 \\
1000 0000 0000 0000 0000 0000 0000 0000_{\text{two}} &= -2^{31} \\
1000 0000 0000 0000 0000 0000 0000 0001_{\text{two}} &= -(2^{31} - 1) \\
1000 0000 0000 0000 0000 0000 0000 0010_{\text{two}} &= -(2^{31} - 2) \\
\text{...} \\
1111 1111 1111 1111 1111 1111 1111 1110_{\text{two}} &= -2 \\
1111 1111 1111 1111 1111 1111 1111 1111_{\text{two}} &= -1
\end{align*}
\]
2’s Complement

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000 _two = 0_{ten}</td>
<td></td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0001 _two = 1_{ten}</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111 _two = 2^{31} - 1</td>
<td></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0000 _two = -2^{31}</td>
<td></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0001 _two = -(2^{31} - 1)</td>
<td></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0010 _two = -(2^{31} - 2)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1110 _two = -2</td>
<td></td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111 _two = -1</td>
<td></td>
</tr>
</tbody>
</table>

Why is this representation favorable?

Consider the sum of 1 and -2 ... we get -1

Consider the sum of 2 and -1 ... we get +1

This format can directly undergo addition without any conversions!

Each number represents the quantity

\[x_{31} 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0 \]
2’s Complement

<table>
<thead>
<tr>
<th>Binary</th>
<th>Decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0000<sub>two</sub> = 0<sub>ten</sub></td>
<td></td>
</tr>
<tr>
<td>0000 0000 0000 0000 0000 0000 0000 0001<sub>two</sub> = 1<sub>ten</sub></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>0111 1111 1111 1111 1111 1111 1111 1111<sub>two</sub> = 2<sup>31</sup>-1</td>
<td></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0000<sub>two</sub> = -2<sup>31</sup></td>
<td></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0000 0001<sub>two</sub> = -(2<sup>31</sup> – 1)</td>
<td></td>
</tr>
<tr>
<td>1000 0000 0000 0000 0000 0000 0000 0000 0010<sub>two</sub> = -(2<sup>31</sup> – 2)</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1110<sub>two</sub> = -2</td>
<td></td>
</tr>
<tr>
<td>1111 1111 1111 1111 1111 1111 1111 1111<sub>two</sub> = -1</td>
<td></td>
</tr>
</tbody>
</table>

Note that the sum of a number x and its inverted representation x’ always equals a string of 1s (-1).

\[
x + x' = -1
\]

\[
x' + 1 = -x
\]

... hence, can compute the negative of a number by inverting all bits and adding 1

Similarly, the sum of x and -x gives us all zeroes, with a carry of 1

In reality, \(x + (-x) = 2^n \) ... hence the name 2’s complement
Example

• Compute the 32-bit 2’s complement representations for the following decimal numbers:
 5, -5, -6
Example

- Compute the 32-bit 2’s complement representations for the following decimal numbers:
 - 5, -5, -6

 - 5: 0000 0000 0000 0000 0000 0000 0000 0101
 - -5: 1111 1111 1111 1111 1111 1111 1111 1011
 - -6: 1111 1111 1111 1111 1111 1111 1111 1010

 Given -5, verify that inverting and adding 1 yields the number 5
Signed / Unsigned

- The hardware recognizes two formats:

 unsigned (corresponding to the C declaration `unsigned int`)
 -- all numbers are positive, a 1 in the most significant bit
 just means it is a really large number

 signed (C declaration is `signed int` or just `int`)
 -- numbers can be +/- , a 1 in the MSB means the number
 is negative

This distinction enables us to represent twice as many numbers when we’re sure that we don’t need negatives
Consider a comparison instruction:
\[\text{slt } \$t0, \$t1, \$zero \]
and \$t1 contains the 32-bit number \[1111\ 01\ldots01\]

What gets stored in \$t0?
MIPS Instructions

Consider a comparison instruction:

```
slt   $t0, $t1, $zero
```

and $t1 contains the 32-bit number 1111 01...01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned number – the compiler/programmer must track this and accordingly use either `slt` or `sltu`

```
slt   $t0, $t1, $zero   stores 1 in $t0
sltu  $t0, $t1, $zero   stores 0 in $t0
```
Sign Extension

• Occasionally, 16-bit signed numbers must be converted into 32-bit signed numbers – for example, when doing an add with an immediate operand

• The conversion is simple: take the most significant bit and use it to fill up the additional bits on the left – known as sign extension

So 2_{10} goes from 0000 0000 0000 0010 to 0000 0000 0000 0000 0000 0000 0000 0010

and -2_{10} goes from 1111 1111 1111 1110 to 1111 1111 1111 1111 1111 1111 1111 1110
Alternative Representations

- The following two (intuitive) representations were discarded because they required additional conversion steps before arithmetic could be performed on the numbers
 - sign-and-magnitude: the most significant bit represents +/- and the remaining bits express the magnitude
 - one’s complement: -x is represented by inverting all the bits of x

Both representations above suffer from two zeroes