Lecture 6: Assembly Programs

e Today’s topics:

= Procedures
=" Examples

ot X Y,z iwﬁf Oce :/—C(_O.,J LWM

Procedures \
{C- ©

Mo /’\'o{‘) C];" — }m)
AP A = — |5l
oS a5 ar) J
procfp \” AL e I
So Vi | ' PRc R
o 3 [—~=
ul jd) O@*ﬁ’> ; ;tz)‘"zf(& ﬁo>
\ acconen [Voo | /]\lw“l
7= 3P0 0 5 $ N L@%Lp‘} v
PWOCH (. pC 7 §bo”® 2
i kr\J(F17/ ‘9300(,6() j\a = J{/\,}

(rocB() ? ink u |
} e Local variables, AR, Sfp, Ssp
e Scratchpad and savgéérestores
j Arguments and returns)

[)
. jalngS'ra/_v
-

Procedures GP{%_; \:T’?&

A
qt1
_*in
) Sof 3Ca
W\\NQV\
.F‘,->/ ?‘sCA
o~

e Local variables, AR, Sfp, Ssp

e Scratchpad and saves/restores
e Arguments and returns
e jal and Sra

3

Procedures

e Each procedure (function, subroutine) maintains a scratchpad of
register values — when another procedure is called (the callee), the
new procedure takes over the scratchpad — values may have to be
saved so we can safely return to the caller

Py
ao ~ &3

= parameters (argmwts) are placed where the callee can see them

= control is transferred to the callee §Q L Ao

= acquire storage resources for callee —> AR /g

= execute the procedure ST

= place result value where caller can accessit vo , V|

= return control to caller g0 g (o

Jump-and-Link

e A special register (storage not part of the register file) maintains the
address of the instruction currently being executed — this is the
program counter (PC)

e The procedure call is executed by invoking the jump-and-link (jal)
instruction — the current PC (actually, PC+4) is saved in the register
Sra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress

e Since jal may over-write a relevant value in Sra, it must be saved/
somewhere (in memory?) before invoking the jal instruction

e How do we return control back to the caller after completing the
callee procedure? $

The Stack

The register scratchpad for a procedure seems volatile —

it seems to disappear every time we switch procedures —
a procedure’s values are therefore backed up in memory

on a stack

Stack grows
this way l

High address

Low address

Proc A
call ProcB
Eéll Proc C
return

return
return

Saves and Restores

Storage Management on a Call/Return

* A new procedure must create space for all its variables on the stack

——

» Before/after executing the jal, the caller/callee must save relevant
values in $s0-Ss7, Sa0-Sa3, Sra, Sfp, temps into the stack space /

e Arguments are copied into Sa0-$Sa3; the jal is executed

e

e After the callee creates stack space, it updates the value of Ssp C“’J ‘-tﬁ)\

,\

e Once the callee finishes, it copies the return value into SvO, frees
up stack space, and Ssp is incremented

e On return, the caller/callee brings in stack values, ra, temps into registers

\

L

e The responsibility for copies between stack and registers may fall
upon either the caller or the callee
8

‘ (
Example 1 (pg. 98) Forable ke
Collee

int leaf_example (int g, int h, inti, int j) leaf_example:

{ ao al az ay 1 addi $sp, $sp, -12
int f; sw Stl, 8(Ssp)
f=(g+h)— (i +)) i
returnf,

}

Notes:

In this example, the callee took care of v, Ss0, 0(Ssp)

saving the registers it needs. rco]'O“"B lw $t0, 4(Ssp)

lw St1, 8(Ssp)

The caller took care of saving its Sra and (_addi Ssp, Ssp, 12

$a0-Sa3. jr Sra

| =

Could have avoided using the stack altogether.

Saving Conventions

e Caller saved: Temp registers St0-St9 (the callee won’t
bother saving these, so save them if you care), Sra (it’s
about to get over-written), Sa0-Sa3 (so you can put in
new arguments), Sfp (if being used by the caller)

e Callee saved: $s0-Ss7 (these typically contain “valuable” y
data) | T P e w453 slerh
Rsh e M old ool 2FES3

e Read the Notes on the class webpage on this topic

10

o g

Example 2 (pg. 101)p.4

steel;

int fact (intn)
_

{
é if (n <1) return (1);

0]

else return (n * fact(n-1));
} /7 \ \

Z

Notes:

The caller saves Sa0 and Sr

in its stack space.

Temp register St0 is never saved.

fact:

L1:

— addi
SW
SW
— addi
S Jal
lw
lw

St0, Sao, 1

St0, Szero, L1
SvO, Szero, 1]
Sra
Ssp, Ssp, -8
ora, 4($sp)
230, 0(Ssp)
Sao, Sao, -1
fact

Fn<l

a0, 0(Ssp)
Sra, 4(Ssp)

Ssp, Ssp, 8
Sv0, $a0, SvO0
Sra

11

Dealing with Characters

e |nstructions are also provided to deal with byte-sized
and half-word quantities: |b (load-byte), sb, |h, sh

e These data types are most useful when dealing with
characters, pixel values, etc.

e C employs ASCII formats to represent characters — each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0);
Ais 65,ais 97

12

Example 3 (pg. 108)

Convert to assembly:

{
inti;
i=0;

I +=1;

void strcpy (char x[], char y[])

while ((x[i] = y[i]) !="\0’)

Notes:
Temp registers not saved.

strcpy:
addi Ssp, Ssp, -4
sw S$s0, 0(Ssp)
add Ss0, Szero, Szero

L1: add St1, SsO, Sal
I¢ St2, 0(St1)
add St3, Ss0, Sa0
sb St2, 0(St3)
beq S$t2, Szero, L2
addi Ss0, Ss0O, 1
j L1

L2: Iw SsO, O(Ssp)
addi Ssp, Ssp, 4
jr Sra

13

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

