Lecture 6: Assembly Programs

e Today’s topics:

= Procedures
=" Examples

Procedures

e Local variables, AR, Sfp, Ssp
e Scratchpad and saves/restores
e Arguments and returns

2
e jal and Sra

Procedures

e Each procedure (function, subroutine) maintains a scratchpad of
register values — when another procedure is called (the callee), the
new procedure takes over the scratchpad — values may have to be
saved so we can safely return to the caller

= parameters (arguments) are placed where the callee can see them
= control is transferred to the callee

= acquire storage resources for callee

= execute the procedure

= place result value where caller can access it

= return control to caller

Jump-and-Link

e A special register (storage not part of the register file) maintains the
address of the instruction currently being executed — this is the
program counter (PC)

e The procedure call is executed by invoking the jump-and-link (jal)
instruction — the current PC (actually, PC+4) is saved in the register
Sra and we jump to the procedure’s address (the PC is accordingly
set to this address)

jal NewProcedureAddress

e Since jal may over-write a relevant value in Sra, it must be saved
somewhere (in memory?) before invoking the jal instruction

e How do we return control back to the caller after completing the
callee procedure?

The Stack

The register scratchpad for a procedure seems volatile —
it seems to disappear every time we switch procedures —
a procedure’s values are therefore backed up in memory

on a stack

Stack grows
this way l

High address

Low address

Proc A
call ProcB
Eéll Proc C
return

return
return

Saves and Restores

Storage Management on a Call/Return

* A new procedure must create space for all its variables on the stack

» Before/after executing the jal, the caller/callee must save relevant
values in $s0-Ss7, Sa0-Sa3, Sra, Sfp, temps into the stack space

e Arguments are copied into Sa0-$Sa3; the jal is executed
e After the callee creates stack space, it updates the value of Ssp

e Once the callee finishes, it copies the return value into SvO, frees
up stack space, and Ssp is incremented

e On return, the caller/callee brings in stack values, ra, temps into registers

e The responsibility for copies between stack and registers may fall
upon either the caller or the callee

Example 1 (pg. 98)

int leaf_example (int g, int h, int, int j)

{
intf;
f=(g+h)=(i+]j);
return f;

}

Notes:
In this example, the callee took care of
saving the registers it needs.

The caller took care of saving its Sra and
Sa0-Sa3.

Could have avoided using the stack altogether.

leaf _example:
addi Ssp, Ssp, -12
SW St1, 8(Ssp)
SW St0, 4(Ssp)
SW Ss0, 0(Ssp)
add StO, Sa0, Sal
add St1, Sa2, Sa3
sub SsO, StO, St1
add SvO, SsO, Szero
lw Ss0, 0(Ssp)
lw St0, 4(Ssp)
lw St1, 8(Ssp)
addi Ssp, Ssp, 12
jr Sra

Saving Conventions

e Caller saved: Temp registers St0-St9 (the callee won’t
bother saving these, so save them if you care), Sra (it’s
about to get over-written), Sa0-Sa3 (so you can put in
new arguments), Sfp (if being used by the caller)

e Callee saved: Ss0-Ss7 (these typically contain “valuable”
data)

e Read the Notes on the class webpage on this topic

Example 2 (pg. 101)

int fact (int n)

{
if (n<1) return (1);
else return (n * fact(n-1));

Notes:

The caller saves Sa0 and Sra

in its stack space.

Temp register StO is never saved.

fact:
slti
beq
addi
jr

L1:
addi
SW
SW
addi
jal
lw
lw
addi
mul
jr

St0, Sao, 1

St0, Szero, L1
SvO, Szero, 1
Sra

SSp; SSpr -8
Sra, 4(Ssp)
$a0, 0(Ssp)
Sao, Sao, -1
fact

$a0, 0(Ssp)
Sra, 4(Ssp)
Ssp, Ssp, 8
SvO0, Sa0, SvO
Sra

10

Dealing with Characters

e |nstructions are also provided to deal with byte-sized
and half-word quantities: |b (load-byte), sb, |h, sh

e These data types are most useful when dealing with
characters, pixel values, etc.

e C employs ASCII formats to represent characters — each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0);
Ais 65,ais 97

11

Example 3 (pg. 108)

Convert to assembly:

{
inti;
i=0;

I +=1;

void strcpy (char x[], char y[])

while ((x[i] = y[i]) !="\0’)

Notes:
Temp registers not saved.

strcpy:
addi Ssp, Ssp, -4
sw S$s0, 0(Ssp)
add Ss0, Szero, Szero

L1: add St1, SsO, Sal
I¢ St2, 0(St1)
add St3, Ss0, Sa0
sb St2, 0(St3)
beq S$t2, Szero, L2
addi Ss0, Ss0O, 1
j L1

L2: Iw SsO, O(Ssp)
addi Ssp, Ssp, 4
jr Sra

12

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12

