Lecture 4: MIPS Instruction Set

e Today’s topics:

= MIPS instructions
" Code examples

HW 1 due today/tomorrow!

HL\S e Pogjch Ca’/tg he)d/

ok

Instruction Set

e Important design principles when defining the
instruction set architecture (ISA):

keep the hardware simple — the chip must only
implement basic primitives and run fast

keep the instructions regular — simplifies the
decodlng/schedulmg of mstrucjons

WLQX
We will later discuss RISC VS CISC %
T M(PS

Example 77 QO 13 =

Ccode a=b+c+d+e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add@i, e
add a, a, e add a, a, f

e |nstructions are simple: fixed number of operands (unlike C)

e A single line of C code is converted into multiple lines of
assembly code

e Some sequences are better than others... the second
sequence needs one more (temporary) variable f

Subtract Example

Ccode f=(g+h)—(i+]j);
translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, | or sub ffi
sub f tO,tl sub f,f,j

e Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative... more on this later

Operands @

* In C, each “variable” is a location in memory 5(9Qc{

e |n hardware, each memory access is expensive — if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the

scratchpad (registers)

e To simplify the instructions, we require that each

instruction (add, sub) only operate on registers
C _
* Note: the number of operands (variables) in a C program is

very large; th?ﬂmely is fixed...
there can be only so many scratchpad registers

Registers

e The MIPS ISA has 32 registers (x86 has 8 registers) —
Why not more? Why not less? lof MAM
S l - o~ 4 bl
—
e Each register is 32 bits wide (modern 64-bit architectures
have 64-bit wide registers) ((\ WMrCJ C éf o> Zm

So
e A 32-bit entity (4 bytes) is referred to as a word 5 | %S(
k—v—/_\

L k !
e To make the code more readable, registers are , _{SSP
partitioned as Ss0-Ss7 (C/Java variables), St0-5t9 ! f;bo

(temporary variables)... is 3 134

6

\\\))c% 7‘,///’,‘ J

Binary Stuff 3 (” Bﬁ@ L>-fl\|

Z o
W
o 8 bits = 1 Byte, also written as 8b = 1B D) L‘ <

\&
svors- e "

e 1 word =32 bits =4B
~

e 1KB=1024B =28 %l CP(/
a3 OODb'/;] C\’\MS
e 1IMB =1024 x 1024 B=2%°B /, O&/LDZQ
324 r? ZMQ) AX] Taklk
e 1GB=1024x 1024 x 1024 B =230 ' ™ A | \9@(do
— |G < o1 H=— e~
e A 32-bit memory address refers to a number between [QO
0and 232 -1, i.e., it identifies a byte in a 4GB memory / D O
Ohﬁfgﬁf ProCesror’

add .
Memory Operands N - Jars

e Values must be fetched from memory before (add and sub)
instructions c%n ogerate on them len | D64

_.)@

Memory

Ib’] o6y

Store word -_
Mem
sw St0, memory ad 5\55 \ y
(og

How is memory-address determined?
O y =termine

Tooeemss——

moun () ¢

Memory Address N TN ;\[,@:i.
1)
4B

e The compiler organizes data in memory it knows the ()
location of every variable (saved in a table)... it can fill @“’f)\a’
in the appropriate mem-address for load-store m&r%ﬂdﬁs*’lsl lﬁ

> %10 L)

b | 4
int a, b, ¢, d[10] C(f_f
Q /

Memory Organization

Sgp points to area in memory that saves global variables

Sgp

Static data (globals)

Text (instructions)

i

10

Memory Instruction Format

e The format of a load instruction: .
T (e eRanply

@ation reg@
— j sou/rce address %;JDE %” Muﬂv&C/
w $t0, 8($t3) loe (e b
— # A7 —
7 MW
any register
a constant that is added to the register in parentheses

—

11

Memory Instruction Format

e The format of a store instruction:

ource register
destination address

sw St0, 8(St3)

any register
a constant that is added to the register in parentheses

12

— add 112,
Example B] J¢1 30

inta, b, ¢, d[10]; LO’)Z "JJ/,/ = (000

oL:b{f(/‘, ﬁO kng‘D

addi Sgp, Szero, 1000 # assume that data is stored at
_ # base address 1000; placed in Sgp;
[L fﬁ() , (09 #$er0is a register that always
equals zero

lw Ss1, 0(Sgp) # brings value of a into register Ss1
lw $s2, 4(Sgp) # brings value of b into register Ss2

lw Ss3, 8(Sgp) # brings value of c into register Ss3

lw Ss4, 12(Sgp) # brings value of d[0] into register Ss4
lw Ss5, 16(Sgp) # brings value of d[1] into register $s5

13

Example

Convert to assembly:

Ccode: d[3] =d[2]+a;

14

Example

Convert to assembly:

Ccode: d[3] =d[2]+a;

Assembly (same assumptions as previous example):
lw SsO, 0(Sgp) # ais brought into SsO
lw Ssi, 20(Sgp) # d[2] is brought into Ss1
add Ss2, Ss0O, Ss1 # the sum isin Ss2
sw $s2, 24(Sgp) # Ss2is stored into d[3]

Assembly version of the code continues to expand!

15

Memory Organization

e The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) — frame
pointer points to the start of the record and stack pointer points to the
end — variable addresses are specified relative to Sfp as Ssp may
change during the execution of the procedure

e Sgp points to area in memory that saves global variables

e Dynamically allocated storage (with malloc()) is placed on the heap

Static data (globals)

Text (instructions)

16

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

