Lecture 3: Performance/Power, MIPS Instructions

e Today’s topic:

= More performance/power equations, examples
= MIPS instructions

e HW1 is due on Thursday (+ 1.5 days)

e TA office hours begin today (CADE Lab, TA queue)

\I
0

¥

A Primer on Clocks and Cycles

ZEP pS

>0pg (L&C) r
797\%‘—@ Kbb(ps

.

5 V\C)M‘”“’@ %CLL Na

an(/QhMCg | _

Performance Equation - | 2 (o]

4 B o 502 P>
'\)CPUEe#Euti@Jme = CPU clock cycles x ClgglgﬂeLime Y

Cloc e time =1 / Clock speed = [_{ %)O‘:‘ X ¥po X (O

If a processor has a frequency of 3 GHz, the clock ticks 32 se
. . . . \ . —\
3 billion times in a second — as we’ll soon see, with each

cIMck, one or more/less instructions may complete 1 "W(Y'G
= clk s pee X = %
(If a program runs forwrrli@rocesson
how many clock cycles did it runfor: J 3 0 6 (JJCQA
If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconoc;ls? \
= 2X107 AN =0
)5S Y (3

= 152
%

\PC = Lty ‘Dé-(cq‘cia

Performance Equation - I CPl= M sor irm

Cpo !

>CPU clock cycles = number of instrs x avg clock cycles
—_— ——

per instruction (CPI)

(Bl 4«0 2 cpl =2 B Cuye

Substituting in previous equation,

[P

Execution time = clock cycle time x number of instrs x avg CPI <:

\‘\—/~———i = —

BN

If a 2 GHz processor graduates an instruction every third cycle, 0\\[6
how many instructions are there in a program that runs for ce|

10 seconds? . =
0 = Xnshs X2 cpi=2 =

c\f<§()
(- 67 5 = o-
(LA(”I) LMMJ (Pc= © 5

Factors Influencing Performance

Execution time = clock cycle time x M avg CPI
—_ .

—

e Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

e Number of instrs: the quality of the compiler and the/
instruction set architecture

e CPI: the nature of each instruction and the quality of the
architecture implementation

Spee dup o€ MIPsower x8L Qg = IOZ

Example = pet MPs_ exec «BL Mega = (O
()MI <SL Cxec MiFS Tera = /D'/z_
Execution time = clock cycle tirge X number of instrs x avg CPI

== 35 Kile = (o

: : 4. :
Which of the following two systems is better? R
FVQ‘L ~PYT= Speelap - | = 1351 :3%:5/. ?Qro\ ~ 0
e A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that

each instruction completes in an average of 1.5 cycles and g
the clock speed is\lGHz ‘ LrX(DC‘ w) = 6 se<s
Exec = | A0 —> I"*OL/AMD

e The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is

1.5 GHz CveC = —— _ X2x 0T XL ~ 8 S,
1'5%(00’ 6

pPrpefimd 4

Power and Energy /)

e Total power = dynaric power + leakage power
e Dynamic power o activity x capacitance x
—— ~
e Leakage power a voltage
— e — -

e Energy = power x time %
(joules) (watts) (sec)

e For a CPUsbound program,
Execution time o cycle time a1 / clock speed

requency
——

ol &ec b = (053
Example Problem New Cyo, Hive = 1225

—\,—?

e A1 GHz processor takes 100 seconds to execute

program, while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?

Dwdiknegy = frvs x fine !
5(70+50> A [gDs = 10 Joles

. |0 °
<7o><(Z+3’0) X =

(64 +%e) 3
Ny % ,/Z = 8

Example Problem

e A1 GHz processor takes 100 seconds to execute a CPU-bound
program, while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?

Normal mode energy =100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J
e
Note:
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPIl is unchanged when
frequency is changed, i.e., exec time varies linearly
with cycle time.

Benchmark Suites

—_—,—,

e Each vendor announces a SPEC rating for their system
= 3 measure of execution time for a fixed collection of
programs
" js a function of a specific CPU, memory system, 10
system, operating system, compiler
= enables easy comparison of different systems

The key is coming up with a collection of relevant programs

10

SPEC CPU

e SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

e SPEC 2006 includes 12 integer and 17 floating-point applications

~——

e The SPEC rating specifies how much faster a system is, compared
to a baseline machine — a system with SPEC rating 600 is 1.5
times faster than a system with SPEC rating 400

* Note that this rating incorporates the behavior of all 29
programs — this may not necessarily predict performance for
your favorite program!

e Latest version\SPEC 2017 1

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

e SPEC uses geometric mean (GM) — the execution time
of each program is?ulﬁﬁl@d‘and the N root is derived

e Another popular metric is arithmetic mean (AM) — the

average of each program’s execution time

e Weighted arithmetic mean — the execution times of some
programs are weighted to balance priorities

12

Amdahl’s Law

e Architecture design is very bottleneck-driven — make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

e Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

e Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O — a new processor that is ten 100 S
times faster results in a 36% reduction in execution time ——
(speedup of 1.56) — Amdahl’s Law states that maximum [0
execution time reduction is 40% (max speedup of 1.66) ——

——— 13

Common Principles

e Amdahl’s Law 2

(; Energy: performance improvements typically also result
in energy improvements — less Ieakagej

* 90-10 rule: 10% of the program accounts for 90% of J w
execution time }\ (?

e Principle of locality: the same data/code will be used

again (temporal locality), nearby data/code will be
touched next (spatial locality)

14

Recap

e Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

e I[mportant trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,

power/thermal constraints, long memory/disk latencies

e Reasoning about performance: clock speeds, CPI,
benchmark suites, performance and power equations

e Next: assembly instructions

15

H&ﬁ C ali)z brc
. W\
Instruction Set \ me —

TSR lorgume

W<
e Understanding the language of the hardware is key to unders ndi@

the hardware/software interface /AV@

e A program (in say, C) is compiled into an executable that is composed
of machine instructions — this executable must also run on future

machines — for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

e Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

e What are important design principles when defining the instruction
set architecture (ISA)?

16

Instruction Set

e Important design principles when defining the
instruction set architecture (ISA):

——

e ——— —_—

Y

keep the hardware simple — the chip must only
implement basic primitives and run fast

keep the instructions regular — simplifies the
decoding/scheduling of instructions

We will later discuss RISC vs CISC

17

A Basic MIPS Instruction

C code: a=b+c;

Assembly code: (human-friendly machine instructions)
add a,b,c # aisthesumofbandc

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:

a=b+c+d+e;
18

Example

Ccode a=b+c+d+e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f d,e
add a, a, e add a, a, f

e |nstructions are simple: fixed number of operands (unlike C)

e A single line of C code is converted into multiple lines of
assembly code

e Some sequences are better than others... the second
sequence needs one more (temporary) variable f

19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

