Lecture 16: Basic CPU Design

e Today’s topics:

= Single-cycle CPU
* Multi-cycle CPU



Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

= basic math (add, sub, and, or, slt)
= memory access (lw and sw)
= branch and jump instructions (beq and j)



Implementation Overview

e We need memory
= to store instructions
= to store data
= for now, let’s make them separate units

e We need registers, ALU, and a whole lot of control logic

e CPU operations common to all instructions:
= use the program counter (PC) to pull instruction out
of instruction memory
= read register values



View from 30,000 Feet

Note: we haven'’t bothered
showing multiplexors
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e What is the role of the Add units?

e Explain the inputs to the data memory unit

e Explain the inputs to the ALU
e Explain the inputs to the register unit
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Clocking Methodology
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e Which of the above units need a clock?
e What is being saved (latched) on the rising edge of the clock?

Keep in mind that the latched value remains there for an entire cycle
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Implementing R-type Instructions

e Instructions of the form add St1, St2, $t3

e Explain the role of each signal
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Implementing Loads/Stores

e Instructions of the form Iw St1, 8(St2) and sw St1, 8(5t2)
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Implementing J-type Instructions

e Instructions of the form beq $t1, St2, offset

PC +4 from instruction datapath —
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View from 10,000 Feet
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View from 5,000 Feet
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Latches and Clocks in a Single-Cycle Design
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e The entire instruction executes in a single cycle
e Green blocks are latches
e At the rising edge, a new PC is recordedT
e At the rising edge, the result of the previous cycle is recorded T
e At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 2" half of the cycle
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Multi-Stage Circuit

PC

Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch
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The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined
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