
1

Lecture 16: Basic CPU Design

• Today’s topics:

 Single-cycle CPU
Multi-cycle CPU

2

Basic MIPS Architecture

• Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

 basic math (add, sub, and, or, slt)
memory access (lw and sw)
 branch and jump instructions (beq and j)

3

Implementation Overview

• We need memory
 to store instructions
 to store data
 for now, let’s make them separate units

• We need registers, ALU, and a whole lot of control logic

• CPU operations common to all instructions:
 use the program counter (PC) to pull instruction out

of instruction memory
 read register values

4

View from 30,000 Feet

• What is the role of the Add units?
• Explain the inputs to the data memory unit
• Explain the inputs to the ALU
• Explain the inputs to the register unit

Note: we haven’t bothered
showing multiplexors

Source: H&P textbook

5

Clocking Methodology

• Which of the above units need a clock?
• What is being saved (latched) on the rising edge of the clock?

Keep in mind that the latched value remains there for an entire cycle

Source: H&P textbook

6

Implementing R-type Instructions

• Instructions of the form add $t1, $t2, $t3
• Explain the role of each signal

Source: H&P textbook

7

Implementing Loads/Stores

• Instructions of the form lw $t1, 8($t2) and sw $t1, 8($t2)

Where does this input come from?

Source: H&P textbook

8

Implementing J-type Instructions

• Instructions of the form beq $t1, $t2, offset

Source: H&P textbook

9

View from 10,000 Feet

Source: H&P textbook

10

View from 5,000 Feet

Source: H&P textbook

11

Latches and Clocks in a Single-Cycle Design

PC Instr
Mem

Reg
File ALU Data

MemoryAddr

• The entire instruction executes in a single cycle
• Green blocks are latches
• At the rising edge, a new PC is recorded
• At the rising edge, the result of the previous cycle is recorded
• At the falling edge, the address of LW/SW is recorded so

we can access the data memory in the 2nd half of the cycle

12

Multi-Stage Circuit

Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch

PC Instr
Mem ALU Data

MemoryL2 Reg
File L3 L4

Reg
File

L5

13

The Assembly Line

A

Start and finish a job before moving to the next

Time

Jobs

Break the job into smaller stages
B C
A B C

A B C
A B C

Unpipelined

Pipelined

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

