Lecture 16: Basic CPU Design

e Today’s topics:

= Single-cycle CPU
* Multi-cycle CPU

Basic MIPS Architecture

* Now that we understand clocks and storage of states,
we’ll design a simple CPU that executes:

= basic math (add, sub, and, or, slt)
= memory access (lw and sw)
= branch and jump instructions (beq and j)

Implementation Overview

e We need memory
= to store instructions
= to store data
= for now, let’s make them separate units

e We need registers, ALU, and a whole lot of control logic

e CPU operations common to all instructions:
= use the program counter (PC) to pull instruction out
of instruction memory
= read register values

View from 30,000 Feet

Note: we haven'’t bothered
showing multiplexors

——
4 —»
%dd . Add
L Data
Register #
Address Instruction ’—E Registers
Register #
Instruction
memory ¢+~ Register #

>ALU

e What is the role of the Add units?

e Explain the inputs to the data memory unit

e Explain the inputs to the ALU
e Explain the inputs to the register unit

Y

Address

Data

Data
memory

Source: H&P textbook

Clocking Methodology

Add

Add

Address Instruction

Instruction
memory

—

g

[&

Data
Register #
Registers

Register #

Register #

>ALU

e Which of the above units need a clock?
e What is being saved (latched) on the rising edge of the clock?

Keep in mind that the latched value remains there for an entire cycle

Y

Address

Data

Data
memory

Source: H&P textbook

5

Implementing R-type Instructions

e Instructions of the form add St1, St2, $t3

e Explain the role of each signal

> Data

i < | Read
ea
rEgiStE‘r1 Read
Register 5 data 1
g v Regd
numbers register 2
5 | Write Registers
3 : register Read
{ Write data 2
Data —
Data
RegWrite
a. Registers

ALU operation

Zero |

ALU ALU
result

b. ALU

Source: H&P textbook

6

Implementing Loads/Stores

e Instructions of the form Iw St1, 8(St2) and sw St1, 8(5t2)

g
35 Read 4 ALU operation
register 1 Read h
—t
Register) 5 |Read data 1
numbers | register 2
5 | \Write Registers ; Data
| register
\. g Read
—
Write data 2
Data —
Data MemWrite
RegWrite
4 —— Address F\:jead —
ata
a. Registers
Data
Where does this input come from? Write ~ memory
data
MemRead

a. Data memory unit Source: H&P textbook

Implementing J-type Instructions

e Instructions of the form beq $t1, St2, offset

PC +4 from instruction datapath —

i Branch
Add target

Rea?d ALU operation
Instruction register 1 Read

Read data 1

register 2 To branch

Write Registers control logic

register Read o

Write Gl

data

RegWrite
16 Sign- 32
| extend

Source: H&P textbook

View from 10,000 Feet

>Add

Read
address
Instruction

Instruction
memaory

| Write

| Read

register 1

| Read

register 2

register

Write
data

Read
data 1

Registers g4

data 2

ALUSrc

ALU
>Add result

RegWrite

Zero

>ALLI ALU
result

ALLU operation

MemWrite

MemtoReg
|
Read
Address data
=
_| Write Data
| data memory

MemRead

Source: H&P textbook

View from 5,000 Feet

>Add

Read
address

Instruction
[31=0]

Instruction
memory

L~

Instruction [31

Instruction [25-21]

RegDst
Branch

/

>Add

MemRead

MemioReqg

ALUOp

| MemWrite

\ | ALUSrc

\ ' .
\ f RegWrite
\.._.

Instruction [2_0—16]

»

Instruction [15-11]

Instruction [15-0]

Read
register 1 paad
| Read data 1
5 | register 2
M| | write ~ Read
Y [register data 2
! il Write
data Registers

-‘x:!‘a‘

>ALU ALU

Zero

result

Instruction [5-0]

Read
Address data

Data

ertememmy

data

Cxc=

Source: H&P textbook

Latches and Clocks in a Single-Cycle Design

Instr Reg Data
Mem File AL Addr Memory

Y Y Y

e The entire instruction executes in a single cycle
e Green blocks are latches
e At the rising edge, a new PC is recordedT
e At the rising edge, the result of the previous cycle is recorded T
e At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 2" half of the cycle

PC

Multi-Stage Circuit

PC

Instead of executing the entire instruction in a single
cycle (a single stage), let’s break up the execution into
multiple stages, each separated by a latch

L3

L4

Reg
File

12

The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined

13

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

