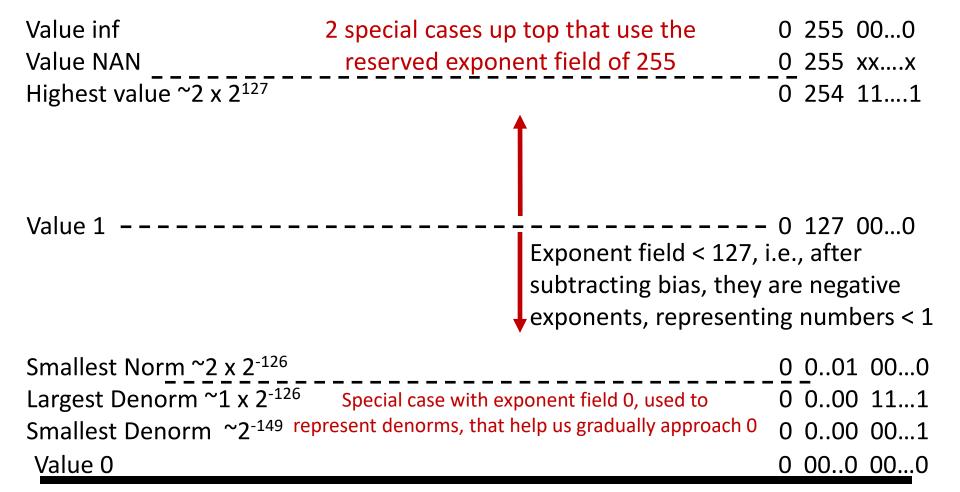
# Lecture 11: Floating Point, Digital Design

- Today's topics:
  - FP formats, arithmetic
  - Intro to Boolean functions



Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

# Example 2

#### Final representation: (-1)<sup>S</sup> x (1 + Fraction) x 2<sup>(Exponent - Bias)</sup>

Represent 36.90625<sub>ten</sub> in single-precision format

$$36 / 2 = 18 \text{ rem } 0$$
  $0.90625 \times 2 = 1.81250$   
 $18 / 2 = 9 \text{ rem } 0$   $0.8125 \times 2 = 1.6250$   
 $9 / 2 = 4 \text{ rem } 1$   $0.625 \times 2 = 1.250$   
 $4 / 2 = 2 \text{ rem } 0$   $0.25 \times 2 = 0.50$   
 $2 / 2 = 1 \text{ rem } 0$   $0.5 \times 2 = 1.00$   
 $1 / 2 = 0 \text{ rem } 1$   $0.0 \times 2 = 0.0$ 

# Example 2

Final representation: (-1)<sup>S</sup> x (1 + Fraction) x 2<sup>(Exponent - Bias)</sup>

We've calculated that  $36.90625_{ten} = 100100.1110100...0$  in binary Normalized form =  $1.001001110100...0 \times 2^5$  (had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is 001001110100...0 (the 23 bits after the point)
The exponent field is 5 + 127 (have to add the bias) = 132,
which in binary is 10000100

The IEEE 754 format is 0 10000100 001001110100.....0 sign exponent 23 fraction bits

# **Examples**

#### Final representation: (-1)<sup>S</sup> x (1 + Fraction) x 2<sup>(Exponent - Bias)</sup>

• Represent -0.75<sub>ten</sub> in single and double-precision formats

Single: (1 + 8 + 23)

Double: (1 + 11 + 52)

Remember:

+127

True exponent

-127

Exponent in register

- What decimal number is represented by the following single-precision number?
  - 1 1000 0001 01000...0000

### **Examples**

Final representation: (-1)<sup>S</sup> x (1 + Fraction) x 2<sup>(Exponent - Bias)</sup>

• Represent -0.75<sub>ten</sub> in single and double-precision formats

```
Single: (1 + 8 + 23)
1 0111 1110 1000...000
```

```
Double: (1 + 11 + 52)
1 0111 1111 110 1000...000
```

 What decimal number is represented by the following single-precision number?

```
1 1000 0001 01000...0000
-5.0
```

#### **FP Addition**

 Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

```
9.999 \times 10^{1} + 1.610 \times 10^{-1}
Convert to the larger exponent:
9.999 \times 10^{1} + 0.016 \times 10^{1}
Add
10.015 \times 10^{1}
Normalize
1.0015 \times 10^2
Check for overflow/underflow
Round
1.002 \times 10^{2}
Re-normalize
```

#### **FP Addition**

 Consider the following decimal example (can maintain only 4 decimal digits and 2 exponent digits)

```
9.999 \times 10^{1} + 1.610 \times 10^{-1}
Convert to the larger exponent:
9.999 \times 10^{1} + 0.016 \times 10^{1}
bbA
10.015 \times 10^{1}
                                           If we had more fraction bits,
Normalize
                                        these errors would be minimized
1.0015 \times 10^{2}
Check for overflow/underflow
Round
1.002 \times 10^{2}
Re-normalize
```

# FP Addition – Binary Example

Consider the following binary example

```
1.010 \times 2^{1} + 1.100 \times 2^{3}
Convert to the larger exponent:
0.0101 \times 2^3 + 1.1000 \times 2^3
Add
1.1101 \times 2^3
Normalize
1.1101 \times 2^3
Check for overflow/underflow
Round
Re-normalize
```

# **FP Multiplication**

- Similar steps:
  - Compute exponent (careful!)
  - Multiply significands (set the binary point correctly)
  - Normalize
  - Round (potentially re-normalize)
  - Assign sign

#### MIPS Instructions

- The usual add.s, add.d, sub, mul, div
- Comparison instructions: c.eq.s, c.neq.s, c.lt.s....
   These comparisons set an internal bit in hardware that is then inspected by branch instructions: bc1t, bc1f
- Separate register file \$f0 \$f31 : a double-precision value is stored in (say) \$f4-\$f5 and is referred to by \$f4
- Load/store instructions (lwc1, swc1) must still use integer registers for address computation

### Code Example

```
float f2c (float fahr)
  return ((5.0/9.0) * (fahr - 32.0));
}
(argument fahr is stored in $f12)
lwc1 $f16, const5
lwc1 $f18, const9
div.s $f16, $f16, $f18
lwc1 $f18, const32
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
      $ra
jr
```

#### **Fixed Point**

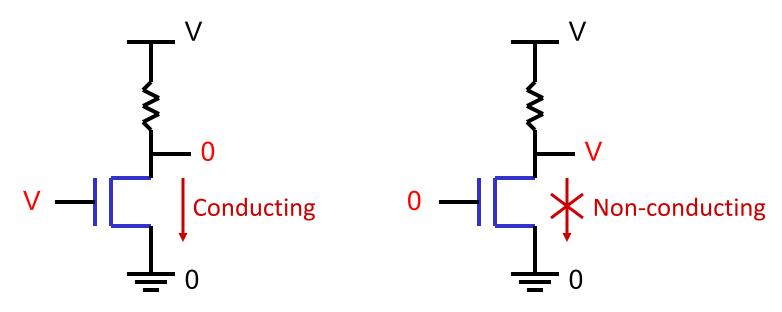
- FP operations are much slower than integer ops
- Fixed point arithmetic uses integers, but assumes that every number is multiplied by the same factor
- Example: with a factor of 1/1000, the fixed-point representations for 1.46, 1.7198, and 5624 are respectively
   1460, 1720, and 5624000
- More programming effort and possibly lower precision for higher performance

#### Subword Parallelism

- ALUs are typically designed to perform 64-bit or 128-bit arithmetic
- Some data types are much smaller, e.g., bytes for pixel RGB values, half-words for audio samples
- Partitioning the carry-chains within the ALU can convert the 64-bit adder into 4 16-bit adders or 8 8-bit adders
- A single load can fetch multiple values, and a single add instruction can perform multiple parallel additions, referred to as subword parallelism

#### **Digital Design Basics**

- Two voltage levels high and low (1 and 0, true and false) Hence, the use of binary arithmetic/logic in all computers
- A transistor is a 3-terminal device that acts as a switch



### Logic Blocks

- A logic block has a number of binary inputs and produces a number of binary outputs – the simplest logic block is composed of a few transistors
- A logic block is termed combinational if the output is only a function of the inputs
- A logic block is termed sequential if the block has some internal memory (state) that also influences the output
- A basic logic block is termed a gate (AND, OR, NOT, etc.)
  - We will only deal with combinational circuits today

#### Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true

| Α | В | С | Е |
|---|---|---|---|
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |
|   |   |   |   |

#### Truth Table

- A truth table defines the outputs of a logic block for each set of inputs
- Consider a block with 3 inputs A, B, C and an output E that is true only if exactly 2 inputs are true

| Α | В | C | E |                           |
|---|---|---|---|---------------------------|
| 0 | 0 | 0 | 0 |                           |
| 0 | 0 | 1 | 0 |                           |
| 0 | 1 | 0 | 0 |                           |
| 0 | 1 | 1 | 1 |                           |
| 1 | 0 | 0 | 0 | Can be compressed by only |
| 1 | 0 | 1 | 1 | representing cases that   |
| 1 | 1 | 0 | 1 | have an output of 1       |
| 1 | 1 | 1 | 0 |                           |
|   |   |   |   | 18                        |

#### **Boolean Algebra**

- Equations involving two values and three primary operators:
  - OR: symbol + , X = A + B → X is true if at least one of A or B is true
  - AND : symbol . , X = A . B → X is true if both A and B are true
  - NOT : symbol ,  $X = A \rightarrow X$  is the inverted value of A

#### **Boolean Algebra Rules**

- Identity law : A + 0 = A ; A . 1 = A
- Zero and One laws: A + 1 = 1; A.0 = 0
- Inverse laws : A . A = 0 ; A + A = 1
- Commutative laws: A + B = B + A ; A . B = B . A
- Associative laws: A + (B + C) = (A + B) + C
   A . (B . C) = (A . B) . C
- Distributive laws : A . (B + C) = (A . B) + (A . C)
   A + (B . C) = (A + B) . (A + C)

# DeMorgan's Laws

$$\bullet \overline{A + B} = \overline{A} \cdot \overline{B}$$

$$\bullet A.B = A + B$$

Confirm that these are indeed true