
1

Lecture 11: Floating Point, Digital Design

• Today’s topics:

 FP formats, arithmetic
 Intro to Boolean functions

2

0 00..0 00…0Value 0

Value 1 0 127 00…0

Value inf
Value NAN
Highest value ~2 x 2127

0 255 00…0
0 255 xx….x
0 254 11….1

Smallest Norm ~2 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm ~2-149

0 0..01 00…0
0 0..00 11…1
0 0..00 00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0

3

Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent 36.90625ten in single-precision format

36 / 2 = 18 rem 0
18 / 2 = 9 rem 0
9 / 2 = 4 rem 1
4 / 2 = 2 rem 0
2 / 2 = 1 rem 0
1 / 2 = 0 rem 1

36 is 100100

0.90625 x 2 = 1.81250
0.8125 x 2 = 1.6250
0.625 x 2 = 1.250
0.25 x 2 = 0.50
0.5 x 2 = 1.00
0.0 x 2 = 0.0

0.90625 is 0.1110100…0

4

Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

We’ve calculated that 36.90625ten = 100100.1110100…0 in binary
Normalized form = 1.001001110100…0 x 25

(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is 001001110100…0 (the 23 bits after the point)
The exponent field is 5 + 127 (have to add the bias) = 132,

which in binary is 10000100

The IEEE 754 format is 0 10000100 001001110100…..0
sign exponent 23 fraction bits

5

Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

Single: (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1 1000 0001 01000…0000

Remember:

True exponent Exponent in register
+127

-127

6

Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent -0.75ten in single and double-precision formats

Single: (1 + 8 + 23)
1 0111 1110 1000…000

Double: (1 + 11 + 52)
1 0111 1111 110 1000…000

• What decimal number is represented by the following
single-precision number?
1 1000 0001 01000…0000

-5.0

7

FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x 101 + 1.610 x 10-1

Convert to the larger exponent:
9.999 x 101 + 0.016 x 101

Add
10.015 x 101

Normalize
1.0015 x 102

Check for overflow/underflow
Round
1.002 x 102

Re-normalize

8

FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999 x 101 + 1.610 x 10-1

Convert to the larger exponent:
9.999 x 101 + 0.016 x 101

Add
10.015 x 101

Normalize
1.0015 x 102

Check for overflow/underflow
Round
1.002 x 102

Re-normalize

If we had more fraction bits,
these errors would be minimized

9

FP Addition – Binary Example

• Consider the following binary example

1.010 x 21 + 1.100 x 23

Convert to the larger exponent:
0.0101 x 23 + 1.1000 x 23

Add
1.1101 x 23

Normalize
1.1101 x 23

Check for overflow/underflow
Round
Re-normalize
IEEE 754 format: 0 10000010 11010000000000000000000

10

FP Multiplication

• Similar steps:
 Compute exponent (careful!)
Multiply significands (set the binary point correctly)
 Normalize
 Round (potentially re-normalize)
 Assign sign

11

MIPS Instructions

• The usual add.s, add.d, sub, mul, div

• Comparison instructions: c.eq.s, c.neq.s, c.lt.s….
These comparisons set an internal bit in hardware that
is then inspected by branch instructions: bc1t, bc1f

• Separate register file $f0 - $f31 : a double-precision
value is stored in (say) $f4-$f5 and is referred to by $f4

• Load/store instructions (lwc1, swc1) must still use
integer registers for address computation

12

Code Example

float f2c (float fahr)
{

return ((5.0/9.0) * (fahr – 32.0));
}

(argument fahr is stored in $f12)
lwc1 $f16, const5
lwc1 $f18, const9
div.s $f16, $f16, $f18
lwc1 $f18, const32
sub.s $f18, $f12, $f18
mul.s $f0, $f16, $f18
jr $ra

13

Fixed Point

• FP operations are much slower than integer ops

• Fixed point arithmetic uses integers, but assumes that
every number is multiplied by the same factor

• Example: with a factor of 1/1000, the fixed-point
representations for 1.46, 1.7198, and 5624 are
respectively 1460, 1720, and 5624000

• More programming effort and possibly lower precision
for higher performance

14

Subword Parallelism

• ALUs are typically designed to perform 64-bit or 128-bit
arithmetic

• Some data types are much smaller, e.g., bytes for pixel
RGB values, half-words for audio samples

• Partitioning the carry-chains within the ALU can convert
the 64-bit adder into 4 16-bit adders or 8 8-bit adders

• A single load can fetch multiple values, and a single
add instruction can perform multiple parallel additions,
referred to as subword parallelism

15

Digital Design Basics

• Two voltage levels – high and low (1 and 0, true and false)
Hence, the use of binary arithmetic/logic in all computers

• A transistor is a 3-terminal device that acts as a switch

V

V

0

0

Conducting 0

V

0

V

Non-conducting

16

Logic Blocks

• A logic block has a number of binary inputs and produces
a number of binary outputs – the simplest logic block is
composed of a few transistors

• A logic block is termed combinational if the output is only
a function of the inputs

• A logic block is termed sequential if the block has some
internal memory (state) that also influences the output

• A basic logic block is termed a gate (AND, OR, NOT, etc.)

We will only deal with combinational circuits today

17

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A B C E

18

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A B C E
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 0

Can be compressed by only
representing cases that
have an output of 1

19

Boolean Algebra

• Equations involving two values and three primary operators:

 OR : symbol + , X = A + B  X is true if at least one of
A or B is true

 AND : symbol . , X = A . B  X is true if both A and B
are true

 NOT : symbol , X = A  X is the inverted value of A

20

Boolean Algebra Rules

• Identity law : A + 0 = A ; A . 1 = A

• Zero and One laws : A + 1 = 1 ; A . 0 = 0

• Inverse laws : A . A = 0 ; A + A = 1

• Commutative laws : A + B = B + A ; A . B = B . A

• Associative laws : A + (B + C) = (A + B) + C
A . (B . C) = (A . B) . C

• Distributive laws : A . (B + C) = (A . B) + (A . C)
A + (B . C) = (A + B) . (A + C)

21

DeMorgan’s Laws

• A + B = A . B

• A . B = A + B

• Confirm that these are indeed true

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

