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Lecture 11: Floating Point, Digital Design

• Today’s topics: 

 FP formats, arithmetic
 Intro to Boolean functions
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0  00..0  00…0Value 0

Value 1 0  127  00…0

Value inf
Value NAN
Highest value ~2 x 2127

0  255  00…0
0  255  xx….x
0  254  11….1

Smallest Norm ~2 x 2-126

Largest Denorm ~1 x 2-126

Smallest Denorm ~2-149

0  0..01  00…0
0  0..00  11…1
0  0..00  00…1

Same rules as above, but the sign bit is 1
Same magnitudes as above, but negative numbers

Exponent field < 127, i.e., after
subtracting bias, they are negative
exponents, representing numbers < 1

2 special cases up top that use the
reserved exponent field of 255

Special case with exponent field 0, used to
represent denorms, that help us gradually approach 0
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Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  36.90625ten in single-precision format

36 / 2 = 18 rem 0
18 / 2 = 9   rem 0
9 / 2 = 4   rem 1
4 / 2 = 2   rem 0
2 / 2 = 1   rem 0
1 / 2 = 0   rem 1

36 is 100100

0.90625 x 2 = 1.81250
0.8125 x 2 = 1.6250
0.625 x 2 = 1.250
0.25 x 2 = 0.50
0.5 x 2 = 1.00
0.0 x 2 = 0.0

0.90625 is 0.1110100…0
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Example 2

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

We’ve calculated that 36.90625ten = 100100.1110100…0 in binary
Normalized form = 1.001001110100…0 x 25

(had to shift 5 places to get only one bit left of the point)

The sign bit is 0 (positive number)
The fraction field is  001001110100…0  (the 23 bits after the point)
The exponent field is  5 + 127 (have to add the bias) = 132,

which in binary is  10000100

The IEEE 754 format is   0   10000100  001001110100…..0
sign  exponent     23 fraction bits
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)

Double: (1 + 11 + 52)

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

Remember:

True exponent                    Exponent in register
+127

-127
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Examples

Final representation: (-1)S x (1 + Fraction) x 2(Exponent – Bias)

• Represent  -0.75ten in single and double-precision formats

Single:  (1 + 8 + 23)
1   0111 1110  1000…000

Double: (1 + 11 + 52)
1   0111 1111 110    1000…000

• What decimal number is represented by the following
single-precision number?
1   1000 0001    01000…0000

-5.0
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize
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FP Addition

• Consider the following decimal example (can maintain
only 4 decimal digits and 2 exponent digits)

9.999  x 101 +     1.610 x 10-1

Convert to the larger exponent:
9.999  x 101 +     0.016 x 101

Add
10.015  x 101

Normalize
1.0015  x 102

Check for overflow/underflow
Round
1.002  x 102

Re-normalize

If we had more fraction bits,
these errors would be minimized
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FP Addition – Binary Example

• Consider the following binary example 

1.010  x 21 +     1.100 x 23

Convert to the larger exponent:
0.0101  x 23 +     1.1000 x 23

Add
1.1101  x 23

Normalize
1.1101  x 23

Check for overflow/underflow
Round
Re-normalize
IEEE 754 format:  0 10000010 11010000000000000000000
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FP Multiplication

• Similar steps:
 Compute exponent  (careful!)
Multiply significands (set the binary point correctly)
 Normalize
 Round (potentially re-normalize)
 Assign sign
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MIPS Instructions

• The usual add.s, add.d, sub, mul, div

• Comparison instructions: c.eq.s, c.neq.s, c.lt.s….
These comparisons set an internal bit in hardware that
is then inspected by branch instructions: bc1t, bc1f

• Separate register file $f0 - $f31  :  a double-precision
value is stored in (say) $f4-$f5 and is referred to by $f4

• Load/store instructions (lwc1, swc1) must still use
integer registers for address computation
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Code Example

float  f2c (float fahr)
{

return ((5.0/9.0) * (fahr – 32.0));
}

(argument fahr is stored in $f12)
lwc1   $f16, const5
lwc1   $f18, const9
div.s   $f16, $f16, $f18
lwc1   $f18, const32
sub.s  $f18, $f12, $f18
mul.s  $f0, $f16, $f18
jr        $ra
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Fixed Point

• FP operations are much slower than integer ops

• Fixed point arithmetic uses integers, but assumes that
every number is multiplied by the same factor 

• Example: with a factor of 1/1000, the fixed-point
representations for 1.46, 1.7198, and 5624 are
respectively           1460, 1720, and 5624000

• More programming effort and possibly lower precision
for higher performance
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Subword Parallelism

• ALUs are typically designed to perform 64-bit or 128-bit
arithmetic

• Some data types are much smaller, e.g., bytes for pixel
RGB values, half-words for audio samples

• Partitioning the carry-chains within the ALU can convert
the 64-bit adder into 4 16-bit adders or 8 8-bit adders

• A single load can fetch multiple values, and a single
add instruction can perform multiple parallel additions,
referred to as subword parallelism
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Digital Design Basics

• Two voltage levels – high and low (1 and 0, true and false)
Hence, the use of binary arithmetic/logic in all computers

• A transistor is a 3-terminal device that acts as a switch

V

V

0

0

Conducting 0

V

0

V

Non-conducting
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Logic Blocks

• A logic block has a number of binary inputs and produces
a number of binary outputs – the simplest logic block is
composed of a few transistors

• A logic block is termed combinational if the output is only
a function of the inputs

• A logic block is termed sequential if the block has some
internal memory (state) that also influences the output

• A basic logic block is termed a gate (AND, OR, NOT, etc.)

We will only deal with combinational circuits today
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Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A   B   C          E



18

Truth Table

• A truth table defines the outputs of a logic block for each
set of inputs

• Consider a block with 3 inputs A, B, C and an output E
that is true only if exactly 2 inputs are true

A    B   C     E
0 0            0                     0
0            0            1                     0
0            1            0                     0
0            1            1                     1
1            0            0                     0
1            0            1                     1
1            1            0                     1
1            1            1                     0

Can be compressed by only
representing cases that
have an output of 1
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Boolean Algebra

• Equations involving two values and three primary operators:

 OR : symbol +  , X = A + B  X is true if at least one of
A or B is true

 AND : symbol . , X = A . B  X is true if both A and B
are true

 NOT : symbol    , X = A   X is the inverted value of A
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Boolean Algebra Rules

• Identity law : A + 0 = A   ;   A . 1 = A

• Zero and One laws :  A + 1 = 1  ;  A . 0 = 0

• Inverse laws :  A . A = 0  ;  A + A = 1

• Commutative laws :  A + B = B + A   ;   A . B = B . A

• Associative laws :  A + (B + C) = (A + B) + C
A . (B . C) = (A . B) . C

• Distributive laws : A . (B + C) = (A . B) + (A . C)
A + (B . C) = (A + B) . (A + C)
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DeMorgan’s Laws

• A + B = A . B

• A . B  =  A + B

• Confirm that these are indeed true
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