
1

Lecture 8: Number Crunching

• Today’s topics:

MARS wrap-up
 RISC vs. CISC
 Numerical representations
 Signed/Unsigned

2

Example Print Routine

.data
str: .asciiz “the answer is ”

.text
li $v0, 4 # load immediate; 4 is the code for print_string
la $a0, str # the print_string syscall expects the string

address as the argument; la is the instruction
to load the address of the operand (str)

syscall # MARS will now invoke syscall-4
li $v0, 1 # syscall-1 corresponds to print_int
li $a0, 5 # print_int expects the integer as its argument
syscall # MARS will now invoke syscall-1

3

Example

• Write an assembly program to prompt the user for two
numbers and print the sum of the two numbers

4

Example
.data

str1: .asciiz “Enter 2 numbers:”
.text str2: .asciiz “The sum is ”

li $v0, 4
la $a0, str1
syscall
li $v0, 5
syscall
add $t0, $v0, $zero
li $v0, 5
syscall
add $t1, $v0, $zero
li $v0, 4
la $a0, str2
syscall
li $v0, 1
add $a0, $t1, $t0
syscall

5

IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations

6

Endian-ness

Two major formats for transferring values between registers and memory

Memory: low address 45 7b 87 7f high address

Little-endian register: the first byte read goes in the low end of the register
Register: 7f 87 7b 45

Most-significant bit Least-significant bit (x86)

Big-endian register: the first byte read goes in the big end of the register
Register: 45 7b 87 7f

Most-significant bit Least-significant bit (MIPS, IBM)

7

Binary Representation

• The binary number

01011000 00010101 00101110 11100111

represents the quantity
0 x 231 + 1 x 230 + 0 x 229 + … + 1 x 20

• A 32-bit word can represent 232 numbers between
0 and 232-1
… this is known as the unsigned representation as
we’re assuming that numbers are always positive

Most significant bit Least significant bit

8

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

9

ASCII Vs. Binary

• Does it make more sense to represent a decimal number
in ASCII?

• Hardware to implement arithmetic would be difficult

• What are the storage needs? How many bits does it
take to represent the decimal number 1,000,000,000 in
ASCII and in binary?

In binary: 30 bits (230 > 1 billion)
In ASCII: 10 characters, 8 bits per char = 80 bits

10

Negative Numbers

32 bits can only represent 232 numbers – if we wish to also represent
negative numbers, we can represent 231 positive numbers (incl zero)
and 231 negative numbers

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

11

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Why is this representation favorable?
Consider the sum of 1 and -2 …. we get -1
Consider the sum of 2 and -1 …. we get +1
This format can directly undergo addition without any conversions!

Each number represents the quantity
x31 -231 + x30 230 + x29 229 + … + x1 21 + x0 20

12

2’s Complement

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten
0000 0000 0000 0000 0000 0000 0000 0001two = 1ten

…
0111 1111 1111 1111 1111 1111 1111 1111two = 231-1

1000 0000 0000 0000 0000 0000 0000 0000two = -231

1000 0000 0000 0000 0000 0000 0000 0001two = -(231 – 1)
1000 0000 0000 0000 0000 0000 0000 0010two = -(231 – 2)

…
1111 1111 1111 1111 1111 1111 1111 1110two = -2
1111 1111 1111 1111 1111 1111 1111 1111two = -1

Note that the sum of a number x and its inverted representation x’ always
equals a string of 1s (-1).

x + x’ = -1
x’ + 1 = -x … hence, can compute the negative of a number by
-x = x’ + 1 inverting all bits and adding 1

Similarly, the sum of x and –x gives us all zeroes, with a carry of 1
In reality, x + (-x) = 2n … hence the name 2’s complement

13

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

14

Example

• Compute the 32-bit 2’s complement representations
for the following decimal numbers:

5, -5, -6

5: 0000 0000 0000 0000 0000 0000 0000 0101
-5: 1111 1111 1111 1111 1111 1111 1111 1011
-6: 1111 1111 1111 1111 1111 1111 1111 1010

Given -5, verify that negating and adding 1 yields the
number 5

15

Signed / Unsigned

• The hardware recognizes two formats:

unsigned (corresponding to the C declaration unsigned int)
-- all numbers are positive, a 1 in the most significant bit

just means it is a really large number

signed (C declaration is signed int or just int)
-- numbers can be +/- , a 1 in the MSB means the number

is negative

This distinction enables us to represent twice as many
numbers when we’re sure that we don’t need negatives

16

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?

17

MIPS Instructions

Consider a comparison instruction:
slt $t0, $t1, $zero

and $t1 contains the 32-bit number 1111 01…01

What gets stored in $t0?
The result depends on whether $t1 is a signed or unsigned
number – the compiler/programmer must track this and
accordingly use either slt or sltu

slt $t0, $t1, $zero stores 1 in $t0
sltu $t0, $t1, $zero stores 0 in $t0

18

Sign Extension

• Occasionally, 16-bit signed numbers must be converted
into 32-bit signed numbers – for example, when doing an
add with an immediate operand

• The conversion is simple: take the most significant bit and
use it to fill up the additional bits on the left – known as
sign extension

So 210 goes from 0000 0000 0000 0010 to
0000 0000 0000 0000 0000 0000 0000 0010

and -210 goes from 1111 1111 1111 1110 to
1111 1111 1111 1111 1111 1111 1111 1110

19

Alternative Representations

• The following two (intuitive) representations were discarded
because they required additional conversion steps before
arithmetic could be performed on the numbers

 sign-and-magnitude: the most significant bit represents
+/- and the remaining bits express the magnitude

 one’s complement: -x is represented by inverting all
the bits of x

Both representations above suffer from two zeroes

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

