Lecture 4: MIPS Instruction Set

e Today’s topics:

= MIPS instructions
" Code examples

HW 1 due today/tomorrow!



Instruction Set

e Important design principles when defining the
instruction set architecture (ISA):

keep the hardware simple — the chip must only
implement basic primitives and run fast

keep the instructions regular — simplifies the
decoding/scheduling of instructions

We will later discuss RISC vs CISC



Example

Ccode a=b+c+d+e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f d,e
add a, a, e add a, a, f

e |nstructions are simple: fixed number of operands (unlike C)

e A single line of C code is converted into multiple lines of
assembly code

e Some sequences are better than others... the second
sequence needs one more (temporary) variable f



Subtract Example

Ccode f=(g+h)—{(i+]);

Assembly code translation with only add and sub instructions:



Subtract Example

Ccode f=(g+h)—(i+]j);
translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, | or sub ffi
sub f tO,t1 sub f,f,j

e Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative... more on this later



Operands

* In C, each “variable” is a location in memory

e |n hardware, each memory access is expensive — if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

e To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

* Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed...
there can be only so many scratchpad registers



Registers

e The MIPS ISA has 32 registers (x86 has 8 registers) —
Why not more? Why not less?

e Each register is 32 bits wide (modern 64-bit architectures
have 64-bit wide registers)

e A 32-bit entity (4 bytes) is referred to as a word
* To make the code more readable, registers are

partitioned as Ss0-Ss7 (C/Java variables), St0-St9
(temporary variables)...



Binary Stuff

e 8 bits = 1 Byte, also written as 8b = 1B
e 1 word = 32 bits =4B

e 1KB=1024B=219B

e 1IMB=1024x1024B=2%°B

e 1GB=1024x 1024 x1024B=23B

e A 32-bit memory address refers to a number between
0 and 23?2-1, i.e., it identifies a byte in a 4GB memory



Memory Operands

e Values must be fetched from memory before (add and sub)
instructions can operate on them

R — e

Load word
lw St0, memory-address

Store word
sw St0, memory-address

Memory

Regstert—

How is memory-address determined?



Memory Address

e The compiler organizes data in memory... it knows the
location of every variable (saved in a table)... it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

Base address

10



Memory Organization

Sgp points to area in memory that saves global variables

Static data (globals)

Sgp ——

Text (instructions)

11



Memory Instruction Format

e The format of a load instruction:

destination register
/ source address

lw St0, 8(St3)

any register
a constant that is added to the register in parentheses

12



Memory Instruction Format

e The format of a store instruction:

source register
/ destination address

sw St0, 8(St3)

any register
a constant that is added to the register in parentheses

13



Example

inta, b, c, d[10];

addi Sgp, Szero, 1000 # assume that data is stored at
# base address 1000; placed in Sgp;
# Szero is a register that always
# equals zero
lw Ssi, 0(Sgp) # brings value of a into register Ss1
lw Ss2, 4(Sgp) # brings value of b into register Ss2
lw Ss3, 8(Sgp) # brings value of c into register Ss3
lw Ss4, 12(Sgp) # brings value of d[0] into register Ss4
lw Ss5, 16(Sgp) # brings value of d[1] into register $s5

14



Example

Convert to assembly:

Ccode: d[3] =d[2]+3a;

15



Example

Convert to assembly:

Ccode: d[3] =d[2]+3a;

Assembly (same assumptions as previous example):
lw  SsO, 0(Sgp) # ais brought into SsO
lw  Ssl, 20(Sgp) # d[2] is brought into Ss1
add Ss2, Ss0O, Ss1 # the sum isin Ss2
sw S$s2, 24(Sgp) # Ss2is stored into d[3]

Assembly version of the code continues to expand!

16



Memory Organization

e The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) — frame
pointer points to the start of the record and stack pointer points to the
end — variable addresses are specified relative to Sfp as Ssp may
change during the execution of the procedure

e Sgp points to area in memory that saves global variables

e Dynamically allocated storage (with malloc()) is placed on the heap

Static data (globals)

Text (instructions)
17




	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

