
1

Lecture 3: Performance/Power, MIPS Instructions

• Today’s topic:

More performance/power equations, examples
MIPS instructions

• HW1 is due on Thursday

• TA office hours have begun

2

Performance Equation - I

CPU execution time = CPU clock cycles x Clock cycle time
Clock cycle time = 1 / Clock speed

If a processor has a frequency of 3 GHz, the clock ticks
3 billion times in a second – as we’ll soon see, with each
clock tick, one or more/less instructions may complete

If a program runs for 10 seconds on a 3 GHz processor,
how many clock cycles did it run for?

If a program runs for 2 billion clock cycles on a 1.5 GHz
processor, what is the execution time in seconds?

3

Performance Equation - II

CPU clock cycles = number of instrs x avg clock cycles
per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle,
how many instructions are there in a program that runs for
10 seconds?

4

Factors Influencing Performance

Execution time = clock cycle time x number of instrs x avg CPI

• Clock cycle time: manufacturing process (how fast is each
transistor), how much work gets done in each pipeline stage
(more on this later)

• Number of instrs: the quality of the compiler and the
instruction set architecture

• CPI: the nature of each instruction and the quality of the
architecture implementation

5

Example

Execution time = clock cycle time x number of instrs x avg CPI

Which of the following two systems is better?

• A program is converted into 4 billion MIPS instructions by a
compiler ; the MIPS processor is implemented such that
each instruction completes in an average of 1.5 cycles and
the clock speed is 1 GHz

• The same program is converted into 2 billion x86 instructions;
the x86 processor is implemented such that each instruction
completes in an average of 6 cycles and the clock speed is
1.5 GHz

6

Power and Energy

• Total power = dynamic power + leakage power

• Dynamic power α activity x capacitance x voltage2 x frequency

• Leakage power α voltage

• Energy = power x time
(joules) (watts) (sec)

7

Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?

8

Example Problem

• A 1 GHz processor takes 100 seconds to execute a program,
while consuming 70 W of dynamic power and 30 W of
leakage power. Does the program consume less energy in
Turbo boost mode when the frequency is increased to 1.2 GHz?

Normal mode energy = 100 W x 100 s = 10,000 J
Turbo mode energy = (70 x 1.2 + 30) x 100/1.2 = 9,500 J

Note:
Frequency only impacts dynamic power, not leakage power.
We assume that the program’s CPI is unchanged when

frequency is changed, i.e., exec time varies linearly
with cycle time.

9

Benchmark Suites

• Each vendor announces a SPEC rating for their system
 a measure of execution time for a fixed collection of

programs
 is a function of a specific CPU, memory system, IO

system, operating system, compiler
 enables easy comparison of different systems

The key is coming up with a collection of relevant programs

10

SPEC CPU

• SPEC: System Performance Evaluation Corporation, an industry
consortium that creates a collection of relevant programs

• SPEC 2006 includes 12 integer and 17 floating-point applications

• The SPEC rating specifies how much faster a system is, compared
to a baseline machine – a system with SPEC rating 600 is 1.5
times faster than a system with SPEC rating 400

• Note that this rating incorporates the behavior of all 29
programs – this may not necessarily predict performance for
your favorite program!

• Latest version: SPEC 2017

11

Deriving a Single Performance Number

How is the performance of 29 different apps compressed
into a single performance number?

• SPEC uses geometric mean (GM) – the execution time
of each program is multiplied and the Nth root is derived

• Another popular metric is arithmetic mean (AM) – the
average of each program’s execution time

• Weighted arithmetic mean – the execution times of some
programs are weighted to balance priorities

12

Amdahl’s Law

• Architecture design is very bottleneck-driven – make the
common case fast, do not waste resources on a component
that has little impact on overall performance/power

• Amdahl’s Law: performance improvements through an
enhancement is limited by the fraction of time the
enhancement comes into play

• Example: a web server spends 40% of time in the CPU
and 60% of time doing I/O – a new processor that is ten
times faster results in a 36% reduction in execution time
(speedup of 1.56) – Amdahl’s Law states that maximum
execution time reduction is 40% (max speedup of 1.66)

13

Common Principles

• Amdahl’s Law

• Energy: performance improvements typically also result
in energy improvements – less leakage

• 90-10 rule: 10% of the program accounts for 90% of
execution time

• Principle of locality: the same data/code will be used
again (temporal locality), nearby data/code will be
touched next (spatial locality)

14

Recap

• Knowledge of hardware improves software quality:
compilers, OS, threaded programs, memory management

• Important trends: growing transistors, move to multi-core
and accelerators, slowing rate of performance improvement,
power/thermal constraints, long memory/disk latencies

• Reasoning about performance: clock speeds, CPI,
benchmark suites, performance and power equations

• Next: assembly instructions

15

Instruction Set

• Understanding the language of the hardware is key to understanding
the hardware/software interface

• A program (in say, C) is compiled into an executable that is composed
of machine instructions – this executable must also run on future
machines – for example, each Intel processor reads in the same x86
instructions, but each processor handles instructions differently

• Java programs are converted into portable bytecode that is converted
into machine instructions during execution (just-in-time compilation)

• What are important design principles when defining the instruction
set architecture (ISA)?

16

Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions

We will later discuss RISC vs CISC

17

A Basic MIPS Instruction

C code: a = b + c ;

Assembly code: (human-friendly machine instructions)
add a, b, c # a is the sum of b and c

Machine code: (hardware-friendly machine instructions)
00000010001100100100000000100000

Translate the following C code into assembly code:
a = b + c + d + e;

18

Example

C code a = b + c + d + e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of

assembly code
• Some sequences are better than others… the second

sequence needs one more (temporary) variable f

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18

