Lecture 20: Cache Hierarchies, Virtual Memory

e Today'’s topics:

= Cache hierarchies
* Virtual memory

« Reminder:

» Assignment 8 will be posted soon (due Tue 11/21)

Example Access Pattern

Byte address Assume that addresses are 8 bits long
How many of the following address requests
101000 |are hits/misses”?

4,7,10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10...
Tag
8-byte words
Compare
A
Direct-mapped cache:
each address maps to
— > a unique address

Tag array Data array

Increasing Line Size

Byte address

Tag

Offset

Tag array

A large cache line size - smaller tag array,
fewer misses because of spatial locality

32-byte cache
line size or
block size

Data array

Associativity

Byte address

\

N

AN

\
\
\

Tag array

Set associativity - fewer conflicts; wasted power
because multiple data and tags are read

N

Compare

Way-1 Way-2

Data array

Associativity

Byte address

\

How many offset/index/tag bits if the cache has
64 sets,
each set has 64 bytes,
4 ways

\
N
NN

Tag array

N

Compare

Way-1 Way-2

Data array

Example

« 32 KB 4-way set-associative data cache array with 32
byte line sizes

« How many sets?
« How many index bits, offset bits, tag bits?

 How large is the tag array?

Cache Misses

e On a write miss, you may either choose to bring the block
Into the cache (write-allocate) or not (write-no-allocate)

* On a read miss, you always bring the block in (spatial and
temporal locality) — but which block do you replace?
» no choice for a direct-mapped cache
» randomly pick one of the ways to replace
» replace the way that was least-recently used (LRU)
» FIFO replacement (round-robin)

Writes

* When you write into a block, do you also update the
copy in L2?
» write-through: every write to L1 - write to L2
» write-back: mark the block as dirty, when the block
gets replaced from L1, write it to L2

» Writeback coalesces multiple writes to an L1 block into one
L2 write

» Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data

Types of Cache Misses

« Compulsory misses: happens the first time a memory
word Is accessed — the misses for an infinite cache

« Capacity misses: happens because the program touched
many other words before re-touching the same word — the
misses for a fully-associative cache

» Conflict misses: happens because two words map to the
same location in the cache — the misses generated while
moving from a fully-associative to a direct-mapped cache

Virtual Memory

* Processes deal with virtual memory — they have the
llusion that a very large address space is available to
them

* There is only a limited amount of physical memory that is
shared by all processes — a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

* Thanks to locality, disk access is likely to be uncommon

 The hardware ensures that one process cannot access

the memory of a different process o

Address Translation

e The virtual and physical memory are broken up into pages

8KB page size

Virtual address

PENE

virtual page page offset o
number

‘ Translated to physical
page number

Physical address
11

Memory Hierarchy Properties

A virtual memory page can be placed anywhere in physical
memory (fully-associative)

* Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

* A page table (indexed by virtual page number) is used for
translating virtual to physical page number

* The page table is itself in memory

12

TLB

 Since the number of pages is very high, the page table
capacity is too large to fit on chip

A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

« A TLB miss requires us to access the page table, which
may not even be found in the cache — two expensive
memory look-ups to access one word of data!

A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
Increases memory wastage

13

TLB and Cache

* |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?

» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

14

Cache and TLB Pipeline

Virtual address

Offset

. . |
Virtual page number, Virtual
indexv

TLB

Tag array
Physical page number

v

Data array

1 Physical tag

Virtually Indexed; Physically Tagged Cache

15

Bad Events

» Consider the longest latency possible for a load instruction:

* TLB miss: must look up page table to find translation for v.page P

» Calculate the virtual memory address for the page table entry
that has the translation for page P — let’s say, this is v.page Q

» TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’'s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

» Access memory location R (find this either in L1, L2, or memory)

» We now have the translation for v.page P — put this into the TLB

= We now have a TLB hit and know the physical page number — this
allows us to do tag comparison and check the L1 cache for a hit

= |f there’s a miss in L1, check L2 — if that misses, check in memory

= At any point, if the page table entry claims that the page is on disk,
flag a page fault — the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault

|
... phew! "

Title

e Bullet

17

