Lecture 25: Security, VM, Multiproc

 Today’s topics:

= Security wrap-up
= Virtual memory
= Multiprocessors, cache coherence

Spectre: Variant 1

X Is controlled by Thanks to bpred, x can be anything

attacker
\ / Aa/rray1[] is the secret

Vietim if (x < array1_size)
Code = y = array2[array1[x] |;

K

Access pattern of array2]]
betrays the secret

Spectre: Variant 2

Attacker code

LabelO: if (1)

Labell: ...

Victim code

R1 < (from attacker)
R2 < some secret
LabelO: if (...

/\

Victim code

Label1:
lw [R2]

Virtual Memory

* Processes deal with virtual memory — they have the
illusion that a very large address space is available to
them

* There is only a limited amount of physical memory that is
shared by all processes — a process places part of its
virtual memory in this physical memory and the rest is
stored on disk (called swap space)

* Thanks to locality, disk access is likely to be uncommon

* The hardware ensures that one process cannot access

the memory of a different process)

Virtual Memory

Address Translation

* The virtual and physical memory are broken up into pages

8KB page size

—

virtual page page offset >
number

‘ Translated to physical
page number

Physical address

Memory Hierarchy Properties

* A virtual memory page can be placed anywhere in physical
memory (fully-associative)

* Replacement is usually LRU (since the miss penalty is
huge, we can invest some effort to minimize misses)

A page table (indexed by virtual page number) is used for
translating virtual to physical page number

* The page table is itself in memory

TLB

 Since the number of pages is very high, the page table
capacity is too large to fit on chip

* A translation lookaside buffer (TLB) caches the virtual
to physical page number translation for recent accesses

* A TLB miss requires us to access the page table, which
may not even be found in the cache — two expensive
memory look-ups to access one word of data!

* A large page size can increase the coverage of the TLB
and reduce the capacity of the page table, but also
Increases memory waste

TLB and Cache

* |Is the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

* Does the tag array store virtual or physical addresses?

» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

9

Cache and TLB Pipeline

Virtual address

Virtual
index

Offset

Virtual page number,

Physical page number

} Physical tag

Physical tag comparion

Virtually Indexed; Physically Tagged Cache

10

Bad Events

 Consider the longest latency possible for a load instruction:

= TLB miss: must look up page table to find translation for v.page P

= Calculate the virtual memory address for the page table entry
that has the translation for page P — let’s say, this is v.page Q

= TLB miss for v.page Q: will require navigation of a hierarchical
page table (let’s ignore this case for now and assume we have
succeeded in finding the physical memory location (R) for page Q)

= Access memory location R (find this either in L1, L2, or memory)

= \We now have the translation for v.page P — put this into the TLB

= \We now have a TLB hit and know the physical page number — this
allows us to do tag comparison and check the L1 cache for a hit

= If there’s a miss in L1, check L2 — if that misses, check in memory

= At any point, if the page table entry claims that the page is on disk,
flag a page fault — the OS then copies the page from disk to memory
and the hardware resumes what it was doing before the page fault

|
... phew! .

Multiprocessor Taxonomy

» SISD: single instruction and single data stream: uniprocessor

* MISD: no commercial multiprocessor: imagine data going
through a pipeline of execution engines

» SIMD: vector architectures: lower flexibility

* MIMD: most multiprocessors today: easy to construct with
off-the-shelf computers, most flexibility

12

Memory Organization - |

* Centralized shared-memory multiprocessor or
Symmetric shared-memory multiprocessor (SMP)

» Multiple processors connected to a single centralized
memory — since all processors see the same memory
organization = uniform memory access (UMA)

« Shared-memory because all processors can access the
entire memory address space

« Can centralized memory emerge as a bandwidth
bottleneck? — not if you have large caches and employ
fewer than a dozen processors

13

Snooping-Based Protocols

 Three states for a block: invalid, shared, modified
« A write is placed on the bus and sharers invalidate themselves
» The protocols are referred to as MSI, MESI, etc.

Main Memory |/O System

Example

* P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

» P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

* P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

* P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops

| and realizes it has the only valid copy, so it

downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated,,

Main Memory

Example

Request | Cache Request | Who responds | State in | Statein | Statein | Statein
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv

P1:Rd X Miss Rd X Memory S Inv Inv Inv
P2: Rd X Miss Rd X Memory S S Inv Inv
P2: WrX Perms Upgrade X No response. Inv M Inv Inv
Miss Other caches
invalidate.
P3: Wr X Write Wr X P2 responds Inv Inv M Inv
Miss
P3: Rd X Read Hit - - Inv Inv M Inv
P4: Rd X Read Rd X P3 responds. Inv Inv S S
Miss Mem wrtbk

16

Cache Coherence Protocols

* Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

* Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block

17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

