Lecture 22: Cache Hierarchies

 Today’s topics:

= Cache access details
= Examples



Locality

* Why do caches work?
= Temporal locality: if you used some data recently, you
will likely use it again
= Spatial locality: if you used some data recently, you
will likely access its neighbors

* No hierarchy: average access time for data = 300 cycles

« 32KB 1-cycle L1 cache that has a hit rate of 95%:
average access time =0.95x 1 + 0.05 x (301)
= 16 cycles



Accessing the Cache

Byte address

101000

\\

Offset

8-byte words

8 words: 3 index bits

Direct-mapped cache:
each address maps to
— a unique location in cache

\Sets

Data array



The Tag Array

Byte address

101000

Tag

Tag array

Compare

Data array

8-byte words

Direct-mapped cache:
each address maps to
a unique address




Example Access Pattern

Byte address

101000

Tag

Tag array

Compare

Assume that addresses are 8 bits long

How many of the following address requests
are hits/misses?

4,7,10,13, 16, 68, 73, 78, 83, 88, 4, 7, 10...

8-byte words

Direct-mapped cache:
each address maps to

a unique address

Data array



Increasing Line Size

Byte address A large cache line size - smaller tag array,
fewer misses because of spatial locality
10100000
V4 32-byte cache
Tag Offset / line size or
block size
—p

Tag array Data array



Associativity

Byte address

Set associativity > fewer conflicts; wasted power
because multiple data and tags are read

10100000
Tag Way-1 Way-2
\
\
\
\
\
\J \\ -
N\
N
Tag array \ Data array

Compare




Associativity

Byte address

How many offset/index/tag bits if the cache has

64 sets,
each set has 64 bytes,
10100000 4 ways
Tag Way-1 Way-2
\
\
\
\
\
\J \\ -
N\
N
Tag array \ Data array

Compare




Example 1

« 32 KB 4-way set-associative data cache array with 32
byte line sizes

* How many sets?
 How many index bits, offset bits, tag bits?

* How large is the tag array?



Example 1

« 32 KB 4-way set-associative data cache array with 32
byte line sizes

cache size = #sets x #ways x block size
 How many sets? 256

 How many index bits, offset bits, tag bits?
8 5 19

* How large is the tag array?
tag array size = #sets x #ways x tag size
=19 Kb =2.375 KB

10



Example 2

* A pipeline has CPI 1 if all loads/stores are L1 cache hits
40% of all instructions are loads/stores
85% of all loads/stores hit in 1-cycle L1
50% of all (10-cycle) L2 accesses are misses

Memory access takes 100 cycles
What is the CPI?

11



Example 2

* A pipeline has CPI 1 if all loads/stores are L1 cache hits
40% of all instructions are loads/stores
85% of all loads/stores hit in 1-cycle L1
50% of all (10-cycle) L2 accesses are misses
Memory access takes 100 cycles
What is the CPI?

Start with 1000 instructions

1000 cycles (includes all 400 L1 accesses)

+ 400 (Id/st) x 15% x 10 cycles (the L2 accesses)

+ 400 x 15% x 50% x 100 cycles (the mem accesses)
= 4,600 cycles

CPI=4.6

12



Example 3

Assume that addresses are 8 bits long

How many of the following address requests
are hits/misses?

4,7,10,13, 16, 24, 36, 4, 48, 64, 4, 36, 64, 4

Byte address

00010000

Tag Way-1 Way-2

8-byte blocks

Data array

Tag array 13



Example 3

Byte address

00010000

Assume that addresses are 8 bits long

How many of the following address requests
are hits/misses?

4,7,10,13, 16, 24, 36, 4, 48, 64, 4, 36, 64, 4
MHMHMMMHMMHM MM

Tag

Tag array

Way-1 Way-2

8-byte blocks

Data array

14




Cache Misses

* On a write miss, you may either choose to bring the block
into the cache (write-allocate) or not (write-no-allocate)

* On a read miss, you always bring the block in (spatial and
temporal locality) — but which block do you replace?
» no choice for a direct-mapped cache
» randomly pick one of the ways to replace
» replace the way that was least-recently used (LRU)
» FIFO replacement (round-robin)

15



Writes

* When you write into a block, do you also update the
copy in L27
» write-through: every write to L1 = write to L2
» write-back: mark the block as dirty, when the block
gets replaced from L1, write it to L2

* Writeback coalesces multiple writes to an L1 block into one
L2 write

» Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data

16



Types of Cache Misses

« Compulsory misses: happens the first time a memory
word is accessed — the misses for an infinite cache

» Capacity misses: happens because the program touched
many other words before re-touching the same word — the
misses for a fully-associative cache

» Conflict misses: happens because two words map to the

same location in the cache — the misses generated while
moving from a fully-associative to a direct-mapped cache

17



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

