Lecture 21: OOQO, Memory Hierarchy

 Today’s topics:

= Qut-of-order execution
= Cache basics

« Mute yourself

« Raise your hand if you have a question

* I'll call on you

* Mute again after the conversation ends

* Feel free to chat among yourselves (keep
it technical), but I'll only see it at the end

An Out-of-Order Processor Implementation

Register File
R1-R32

Reorder Buffer (ROB)
Branch prediction Instr 1| T1
and instr fetch Instr2| T2 \
Instr3| T3
l Instr4| T4
Instr5| T5
Instr6| T6
R1 ¢« R1+R2
R2 < R1+R3
BEQZR2 |, Decode &
R3 & R1+R2 NERETIE T1 € R1+R2
R1 € R3+R2 \ T2 € T1+R3
BEQZ T2
Instr Fetch Queue T4 < T1+T2
T5 € T4+T2

Issue Queue (1Q)

= |ALU| |ALU

ALU

!

Results written to
ROB and tags
broadcast to 1Q

Example Code

Completion times

ADD R1, R2, R3
ADD R4, R1, R2
LW RS5, 8(R4)
ADD R7, R6, R5
ADD RS, R7, R5
LW RO, 16(R4)
ADD R10, R6, R9
ADD R11, R10, R9

with in-order

S)
6
7
9
10
11

13
14

with 000

CO~NgO~NO O

—

Cache Hierarchies

« Data and instructions are stored on DRAM chips — DRAM
IS a technology that has high bit density, but relatively poor
latency — an access to data in memory can take as many
as 300 cycles today!

* Hence, some data is stored on the processor in a structure
called the cache — caches employ SRAM technology, which
is faster, but has lower bit density

* Internet browsers also cache web pages — same concept

Memory Hierarchy

* As you go further, capacity and latency increase

5

Locality

* Why do caches work?
= Temporal locality: if you used some data recently, you
will likely use it again
= Spatial locality: if you used some data recently, you
will likely access its neighbors

* No hierarchy: average access time for data = 300 cycles

« 32KB 1-cycle L1 cache that has a hit rate of 95%:
average access time =0.95x 1 + 0.05 x (301)
= 16 cycles

Accessing the Cache

Byte address

101000

\\

Offset

8-byte words

8 words: 3 index bits

Direct-mapped cache:
each address maps to
— a unique location in cache

\Sets

Data array

The Tag Array

Byte address

101000

Tag

Tag array

Compare

Data array

8-byte words

Direct-mapped cache:
each address maps to
a unique address

Example Access Pattern

Byte address

101000

Tag

Tag array

Compare

Assume that addresses are 8 bits long

How many of the following address requests
are hits/misses?

4,7,10,13, 16, 68, 73, 78, 83, 88, 4, 7, 10...

8-byte words

Direct-mapped cache:
each address maps to

a unique address

Data array

Increasing Line Size

Byte address A large cache line size - smaller tag array,
fewer misses because of spatial locality
10100000
V4 32-byte cache
Tag Offset / line size or
block size
—p

Tag array Data array
10

Associativity

Byte address

Set associativity > fewer conflicts; wasted power
because multiple data and tags are read

10100000
Tag Way-1 Way-2
\
\
\
\
\
\J \\ -
N\
N
Tag array \ Data array

Compare

11

Associativity

Byte address

How many offset/index/tag bits if the cache has

64 sets,
each set has 64 bytes,
10100000 4 ways
Tag Way-1 Way-2
\
\
\
\
\
\J \\ -
N\
N
Tag array \ Data array

Compare

12

Example

« 32 KB 4-way set-associative data cache array with 32
byte line sizes

* How many sets?
 How many index bits, offset bits, tag bits?

* How large is the tag array?

13

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

