Lecture 20: Branches, OOO

 Today’s topics:

= Branch prediction
= Qut-of-order execution

« Mute yourself

« Raise your hand if you have a question

* I'll call on you

* Mute again after the conversation ends

* Feel free to chat among yourselves (keep
it technical), but I'll only see it at the end

Control Hazards

» Simple techniques to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost

» make a smarter guess and fetch instructions from the

expected target)

Branch Delay Slots

a. From before b. From target
add $s1, $s2, $s3 sub $t4, $t5, $t6 =
if $s2 = 0 then ——
Delay slot add $s1, $s2, $s3
if $51 = 0 then —
= Delay slot
Becomes Becomes
y Y
-
if $s2 = 0 then ——

dd $s1, $s2, $s3
add 351, $52. $53 add $s1, $s2, Is

if $s1 = 0 then —

I

sub $t4, $t5, $t6

Source: H&P textbook

Pipeline without Branch Predictor

Pipeline with Branch Predictor

Branch
Predictor

Bimodal Predictor

14 bits

2-Bit Prediction

* For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
... sound familiar?

* If (counter >= 2), predict taken, else predict not taken

* The counter attempts to capture the common case for
each branch

Indexing functions
Multiple branch predictors
History, trade-offs

Slowdowns from Stalls

* Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
-> speedup = increase Iin clock speed = num pipeline stages

» With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

» Total cycles = number of instructions + stall cycles

Multicycle Instructions

2 3HA Elsawiar Boikenos (LIEA}. Ml ights roscrsed.

» Multiple parallel pipelines — each pipeline can have a different
number of stages

* Instructions can now complete out of order — must make sure
that writes to a register happen in the correct order

An Out-of-Order Processor Implementation

Reorder Buffer (ROB)

|

—’-1--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

Issue Queue (1Q)
10

Example Code

Completion times

ADD R1, R2, R3
ADD R4, R1, R2
LW RS5, 8(R4)
ADD R7, R6, R5
ADD RS, R7, R5
LW RO, 16(R4)
ADD R10, R6, R9
ADD R11, R10, R9

with in-order

S)
6
7
9
10
11

13
14

with 000

CO~NgO~NO O

—

11

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

