Lecture 19: Pipelining

 Today’s topics:

= Hazards and instruction scheduling
= Branch prediction
= Qut-of-order execution

Problem 1

add $1, $2, $3

lw

$4, 8(31)

IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW

Problem 2

w $1, 8($2)

lw $4, 8($51)

IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW

Problem 3

w $1, 8($2)

sw $1, 8($3)

IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW
IF D/R || ALU || DM || RW

Problem 4

A7 or 9 stage pipeline

IF

IF

Dec

Dec

RR

ALU

RW

w $1, 8($2)

add $4, $1, $3

ALU

DM

DM

RW

Problem 4

Without bypassing: 4 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:DE :DE:RR:AL:RW

With bypassing: 2 stalls
|F:IF:DE:DE:RR:AL:DM:DM:RW
IF: IF :DE:DE:DE:DE:RR :AL:RW

w $1, 8(%2)

IF IF || Dec || Dec || RR ALU || RW
add %4, $1, $3

ALU || DM || DM || RW

Control Hazards

» Simple techniques to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost

» make a smarter guess and fetch instructions from the

expected target 7

Branch Delay Slots

a. From before b. From target
add $s1, $s2, $s3 sub $t4, $t5, $t6 =
if $s2 = 0 then ——
Delay slot add $s1, $s2, $s3
if $51 = 0 then —
= Delay slot
Becomes Becomes
y Y
-
if $s2 = 0 then ——

dd $s1, $s2, $s3
add 351, $52. $53 add $s1, $s2, Is

if $s1 = 0 then —

I

sub $t4, $t5, $t6

Source: H&P textbook

Pipeline without Branch Predictor

Pipeline with Branch Predictor

Branch
Predictor

10

2-Bit Prediction

* For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
... sound familiar?

* If (counter >= 2), predict taken, else predict not taken

* The counter attempts to capture the common case for
each branch

11

Bimodal Predictor

14 bits

Slowdowns from Stalls

* Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
-> speedup = increase Iin clock speed = num pipeline stages

» With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

» Total cycles = number of instructions + stall cycles

13

Multicycle Instructions

2 3HA Elsawiar Boikenos (LIEA}. Ml ights roscrsed.

» Multiple parallel pipelines — each pipeline can have a different
number of stages

* Instructions can now complete out of order — must make sure

that writes to a register happen in the correct order
14

An Out-of-Order Processor Implementation

Reorder Buffer (ROB)

|

—’-1--

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

Issue Queue (1Q)
15

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

