
1

Lecture 19: Pipelining

• Today’s topics:

 Hazards and instruction scheduling
 Branch prediction
 Out-of-order execution

2

Problem 1

add $1, $2, $3

lw $4, 8($1)

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

3

Problem 2

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

lw $1, 8($2)

lw $4, 8($1)

4

Problem 3

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

IF D/R ALU DM RW

lw $1, 8($2)

sw $1, 8($3)

5

Problem 4

IF Dec ALU

DM RWALU DM

RW

lw $1, 8($2)

add $4, $1, $3

IF Dec RR

A 7 or 9 stage pipeline

6

Problem 4

IF Dec ALU

DM RWALU DM

RW
lw $1, 8($2)

add $4, $1, $3
IF Dec RR

Without bypassing: 4 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW

IF: IF :DE:DE:DE:DE:DE :DE:RR:AL:RW

With bypassing: 2 stalls
IF:IF:DE:DE:RR:AL:DM:DM:RW

IF: IF :DE:DE:DE:DE:RR :AL:RW

7

Control Hazards

• Simple techniques to handle control hazard stalls:
 for every branch, introduce a stall cycle (note: every

6th instruction is a branch!)
 assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

 fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost

 make a smarter guess and fetch instructions from the
expected target

8

Branch Delay Slots

Source: H&P textbook

9

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4

10

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor

11

2-Bit Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
… sound familiar?

• If (counter >= 2), predict taken, else predict not taken

• The counter attempts to capture the common case for
each branch

12

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters

13

Slowdowns from Stalls

• Perfect pipelining with no hazards  an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

14

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
number of stages

• Instructions can now complete out of order – must make sure
that writes to a register happen in the correct order

15

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1  R1+R2
R2  R1+R3

BEQZ R2
R3  R1+R2
R1  R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1  R1+R2
T2  T1+R3

BEQZ T2
T4  T1+T2
T5  T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags
broadcast to IQ

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

