Lecture 17: Basic Pipelining

 Today’s topics:

= 1-stage design
= 5-stage design
= 5-stage pipeline
= Hazards



View from 30,000 Feet
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* What is the role of the Add units?

« Explain the inputs to the data memory unit

« Explain the inputs to the ALU
« Explain the inputs to the register unit
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Implementing J-type Instructions

* Instructions of the form beq $t1, $t2, offset

PC +4 from instruction datapath —
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View from 10,000 Feet
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View from 5,000 Feet
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Latches and Clocks in a Single-Cycle Design
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* The entire instruction executes in a single cycle
» Green blocks are latches

* At the rising edge, a new PC is recorded T

* At the rising edge, the result of the previous cycle is recordedT
* At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 2"9 half of the cycle

6




Multi-Stage Circuit

* Instead of executing the entire instruction in a single
cycle (a single stage), let's break up the execution into
multiple stages, each separated by a latch
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The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined



Performance Improvements?

* Does it take longer to finish each individual job?
* Does it take shorter to finish a series of jobs?

* What assumptions were made while answering these
questions?

* |Is a 10-stage pipeline better than a 5-stage pipeline?



Quantitative Effects

* As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPI remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed
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A 5-Stage Pipeline
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A 5-Stage Pipeline

Use the PC to access the |-cache and increment PC by 4

Time (in clock cyclesy
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A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)
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A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Time (in clock cyclesy
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A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Time (in clock cyclesy
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A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cyclesy
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Pipeline Summary

RR ALU DM
ADD R1,R2, > R3 RdR1,R2 R1+R2 -

BEQ R1,R2,100 RdR1,R2 -- -
Compare, Set PC

LD 8[R3] > R6 RIR3  R3+8 Getdata

ST 8[R3] < R6 RdR3,R6 R3+8 Wr data
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Conflicts/Problems

* |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

» Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

 Branch target changes only at the end of the second stage
-- what do you do in the meantime?
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Hazards

 Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

 Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

 Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways
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