Lecture 17: Basic Pipelining

 Today’s topics:

= 1-stage design
= 5-stage design
= 5-stage pipeline
= Hazards

View from 30,000 Feet

Add

Add

Note: we haven'’t bothered
showing multiplexors

Address Instruction

Instruction
memory

—

g

[&

Data
Register #
Registers

Register #

Register #

>ALU

* What is the role of the Add units?

« Explain the inputs to the data memory unit

« Explain the inputs to the ALU
« Explain the inputs to the register unit

Y

Address

Data

memory

Data

Source: H&P textbook

Implementing J-type Instructions

* Instructions of the form beq $t1, $t2, offset

PC +4 from instruction datapath —

i Branch
Add target

Rea?d ALU operation
Instruction register 1 Read

Read data 1

register 2 To branch

Write Registers control logic

register Read o

Write Gl

data

RegWrite
16 Sign- 32
| extend

Source: H&P textbook

View from 10,000 Feet

>Add

Read
address
Instruction

Instruction
memaory

| Write

| Read

register 1

| Read

register 2

register

Write
data

Read
data 1

Registers g4

data 2

ALUSrc

ALU
>Add result

RegWrite

Zero

>ALLI ALU
result

ALLU operation

MemWrite

MemtoReg
|
Read
Address data
=
_| Write Data
| data memory

MemRead

Source: H&P textbook

View from 5,000 Feet

>Add

Read
address

Instruction
[31=0]

Instruction
memory

L~

Instruction [31

Instruction [25-21]

RegDst
Branch

/

>Add

MemRead

MemioReqg

ALUOp

| MemWrite

\ | ALUSrc

\ ' .
\ f RegWrite
\.._.

Instruction [2_0—16]

»

Instruction [15-11]

Instruction [15-0]

Read
register 1 paad
| Read data 1
5 | register 2
M| | write ~ Read
Y [register data 2
! il Write
data Registers

-‘x:!‘a‘

>ALU ALU

Zero

result

Instruction [5-0]

Read
Address data

Data

ertememmy

data

Cxc=

Source: H&P textbook

Latches and Clocks in a Single-Cycle Design

Instr

B Mem

Reg
File

ALU

Data

Addr Memory

Y

Y

Y

* The entire instruction executes in a single cycle
» Green blocks are latches

* At the rising edge, a new PC is recorded T

* At the rising edge, the result of the previous cycle is recordedT
* At the falling edge, the address of LW/SW is recorded so T
we can access the data memory in the 2"9 half of the cycle

6

Multi-Stage Circuit

* Instead of executing the entire instruction in a single
cycle (a single stage), let's break up the execution into
multiple stages, each separated by a latch

L3 L4

Reg
File

The Assembly Line

Unpipelined Start and finish a job before moving to the next

Jobs

» Time

Break the job into smaller stages

Pipelined

Performance Improvements?

* Does it take longer to finish each individual job?
* Does it take shorter to finish a series of jobs?

* What assumptions were made while answering these
questions?

* |Is a 10-stage pipeline better than a 5-stage pipeline?

Quantitative Effects

* As a result of pipelining:

» Time in ns per instruction goes up

» Each instruction takes more cycles to execute

» But... average CPI remains roughly the same

» Clock speed goes up

» Total execution time goes down, resulting in lower
average time per instruction

» Under ideal conditions, speedup
= ratio of elapsed times between successive instruction

completions

= number of pipeline stages = increase in clock speed

10

A 5-Stage Pipeline

CC 6

I

Source: H&P textbook 1

A 5-Stage Pipeline

Use the PC to access the |-cache and increment PC by 4

Time (in clock cyclesy

CC 1 cc 2 cCc 3 CcC 4 CC 5 CC 6

” = roa | = | %
IE= A A==
-

N
D
0
Q
~
L
|
g
£
[
1
0
Q

I

Z

7

3

|m

Ry
H Lij

12

A 5-Stage Pipeline

Read registers, compare registers, compute branch target; for now, assume
branches take 2 cyc (there is enough work that branches can easily take more)

Time (in clock cycles)

cC 4 CcC 5 CcCe

IM ﬁ Reg |
: _ 13
‘ /|

A 5-Stage Pipeline

ALU computation, effective address computation for load/store

Time (in clock cyclesy

CC 1 cc 2 cCc 3 CcC 4 CC 5 CC 6

» ~ oo ol ey
= A=
0>

2
L
:
3
\/
)
|
2
|
y |

I

Z

7

3

|m

Ry
H Lij

14

A 5-Stage Pipeline

Memory access to/from data cache, stores finish in 4 cycles

Time (in clock cyclesy

CC 1 cc 2 cCc 3 CcC 4 CC 5 CC 6

” = roa | = | %
IE= A A==
-

N
D
0
Q
~
L
|
g
£
[
1
0
Q

I

Z

7

3

|m

Ry
H Lij

15

A 5-Stage Pipeline

Write result of ALU computation or load into register file

Time (in clock cyclesy

CC 1 cc 2 cCc 3 CcC 4 CC 5 CC 6

” = roa | = | %
IE= A A==
-

N
D
0
Q
~
L
|
g
£
[
1
0
Q

I

Z

7

3

|m

Ry
H Lij

16

Pipeline Summary

RR ALU DM
ADD R1,R2, > R3 RdR1,R2 R1+R2 -

BEQ R1,R2,100 RdR1,R2 -- -
Compare, Set PC

LD 8[R3] > R6 RIR3 R3+8 Getdata

ST 8[R3] < R6 RdR3,R6 R3+8 Wr data

17

Conflicts/Problems

* |-cache and D-cache are accessed in the same cycle — it
helps to implement them separately

» Registers are read and written in the same cycle — easy to
deal with if register read/write time equals cycle time/2

 Branch target changes only at the end of the second stage
-- what do you do in the meantime?

18

Hazards

 Structural hazards: different instructions in different stages
(or the same stage) conflicting for the same resource

 Data hazards: an instruction cannot continue because it
needs a value that has not yet been generated by an
earlier instruction

 Control hazard: fetch cannot continue because it does
not know the outcome of an earlier branch — special case
of a data hazard — separate category because they are
treated in different ways

19

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

