Lecture 15: Review Session

Today's topics:

- FSM examples
- Midterm review session
- Midterm rules:

This exam allows open book, open notes, open laptop, but no internet access. You may also not use the MARS simulator or other calculators and tools for numeric conversions. Use of calculators for other problems is ok. If necessary, make reasonable assumptions and clearly state them. The only clarifications you may ask for during the exam are definitions of terms. You'll receive partial credit if you show your steps and explain your line of thinking, so attempt every question even if you can't fully solve it. Complete your answers in the space provided (including the back-side of each page). Confirm that you have 15 questions on 7 pages, followed by a blank page. Turn in your answer sheets before 10:35am. The test is worth 100 points and you have about 90 minutes, so allocate time accordingly.

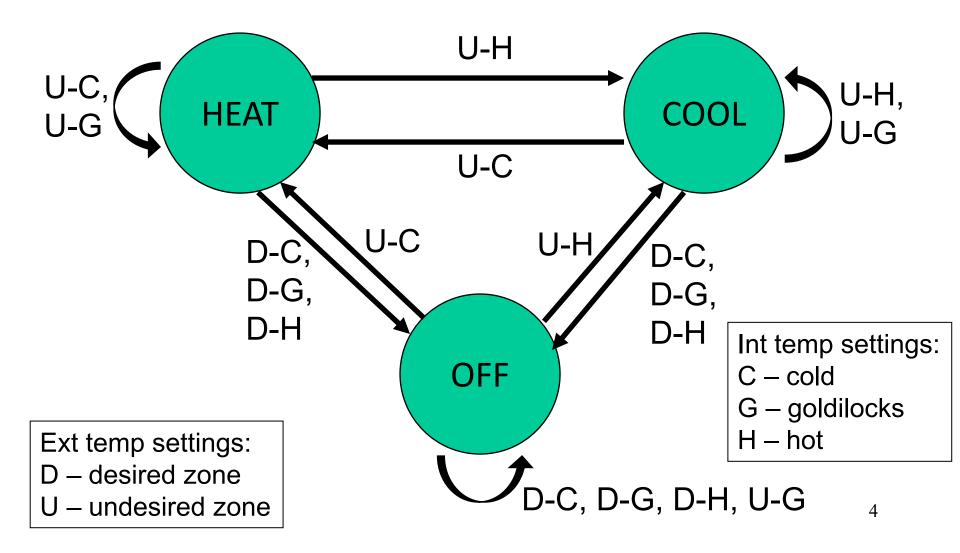
Example – Residential Thermostat

- Two temp sensors: internal and external
- If internal temp is within 1 degree of desired, don't change setting
- If internal temp is > 1 degree higher than desired, turn AC on; if internal temp is < 1 degree lower than desired, turn heater on
- If external temp and desired temp are within 5 degrees, disregard the internal temp, and turn both AC and heater off

Finite State Machine Table

Current State	Input E	Input I	Output State
HEAT	D	С	OFF
HEAT	D	G	OFF
HEAT	D	Н	OFF
HEAT	U	С	HEAT
HEAT	U	G	HEAT
HEAT	U	Н	COOL
COOL	D	С	OFF
COOL	D	G	OFF
COOL	D	Н	OFF
COOL	U	С	HEAT
COOL	U	G	COOL
COOL	U	Н	COOL
OFF	D	С	OFF
OFF	D	G	OFF
OFF	D	Н	OFF
OFF	U	С	HEAT
OFF	U	G	OFF
OFF	U	Н	COOL
OFF	U	G	OFF

Finite State Diagram



Consider the following sequential circuit for an automated vacuum cleaning device. The circuit decides if the steering should be kept straight, or if it should be moved right, or moved left. The device has a sensor that determines if the device has hit a wall. If a wall hasn't been hit, the steering is kept straight. If a wall has been hit, the steering is turned to the opposite of its last non-straight position, i.e., if the steering's last non-straight position was right, the steering is now moved to left.

- What are the output states for this finite state machine?
- What are the different input values being received by the finite state machine?
- Construct the finite state transition table for this circuit. 5

At first, the output of the circuit appears to be LEFT, RIGHT, STRAIGHT. But the circuit also needs to remember if the steering's last non-straight setting was LEFT or RIGHT. I could either do this with an internal variable that remembers this state, or I could make this part of the output state. I'll go with the latter approach, so the output states now become LEFT, RIGHT, LSTRAIGHT, RSTRAIGHT.

There's only 1 input, which is the wall-detecting sensor, which is either 1 (wall detected) or 0 (wall not detected).

The finite state table will therefore have 8 entries (4 states, each receiving 2 possible input values).

CURR-STATE	INPUT	NEXT-STATE
LEFT	0	LSTRAIGHT
RIGHT	0	RSTRAIGHT
LSTRAIGHT	0	LSTRAIGHT
RSTRAIGHT	0	RSTRAIGHT
LEFT	1	RIGHT
RIGHT	1	LEFT
LSTRAIGHT	1	RIGHT
RSTRAIGHT	1	LEFT

- Historical contributions to performance:
 - Better processes (faster devices) ~20%
 - Better circuits/pipelines ~15%
 - Better organization/architecture ~15%

Today, annual improvement is closer to 20%; this is primarily because of slowly increasing transistor count and more cores.

Need multi-thread parallelism and accelerators to boost performance every year.

Performance Measures

- Performance = 1 / execution time
- Speedup = ratio of performance
- Performance improvement = speedup -1
- Execution time = clock cycle time x CPI x number of instrs

Program takes 100 seconds on ProcA and 150 seconds on ProcB

Speedup of A over B = 150/100 = 1.5Performance improvement of A over B = 1.5 - 1 = 0.5 = 50%

Speedup of B over A = 100/150 = 0.66 (speedup less than 1 means performance went down) Performance improvement of B over A = 0.66 - 1 = -0.33 = -33%or Performance degradation of B, relative to A = 33%

If multiple programs are executed, the execution times are combined into a single number using AM, weighted AM, or GM 9 CPU execution time = CPU clock cycles x Clock cycle time

CPU clock cycles = number of instrs x avg clock cycles per instruction (CPI)

Substituting in previous equation,

Execution time = clock cycle time x number of instrs x avg CPI

If a 2 GHz processor graduates an instruction every third cycle, how many instructions are there in a program that runs for 10 seconds?

- Dyn power α activity x capacitance x voltage² x frequency
- Capacitance per transistor and voltage are decreasing, but number of transistors and frequency are increasing at a faster rate
- Leakage power is also rising and will soon match dynamic power
- Power consumption is already around 100W in some high-performance processors today

Basic MIPS Instructions

- lw \$t1, 16(\$t2)
- add \$t3, \$t1, \$t2
- addi \$t3, \$t3, 16
- sw \$t3, 16(\$t2)
- beq \$t1, \$t2, 16
- blt is implemented as slt and bne
- j 64
- jr \$t1
- sll \$t1, \$t1, 2

Convert to assembly: while (save[i] == k) i += 1;

i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

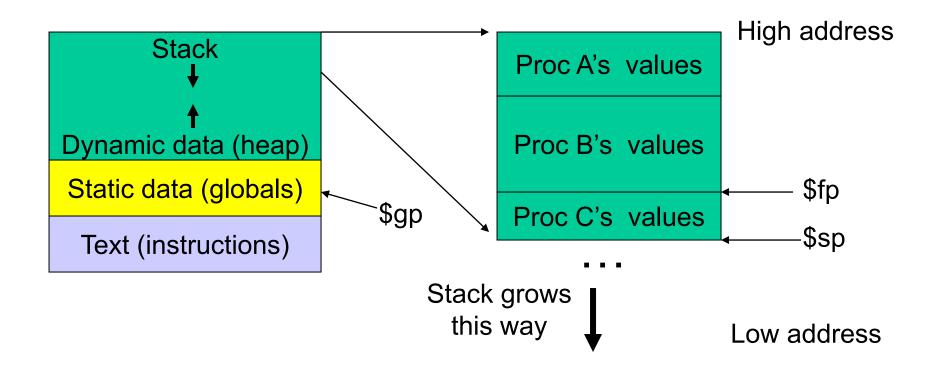
Loop:	sll	\$t1, \$s3, 2
	add	\$t1, \$t1, \$s6
	W	\$t0, 0(\$t1)
	bne	\$t0, \$s5, Exit
	addi	\$s3, \$s3, 1
	j	Loop
Exit:		12

Registers

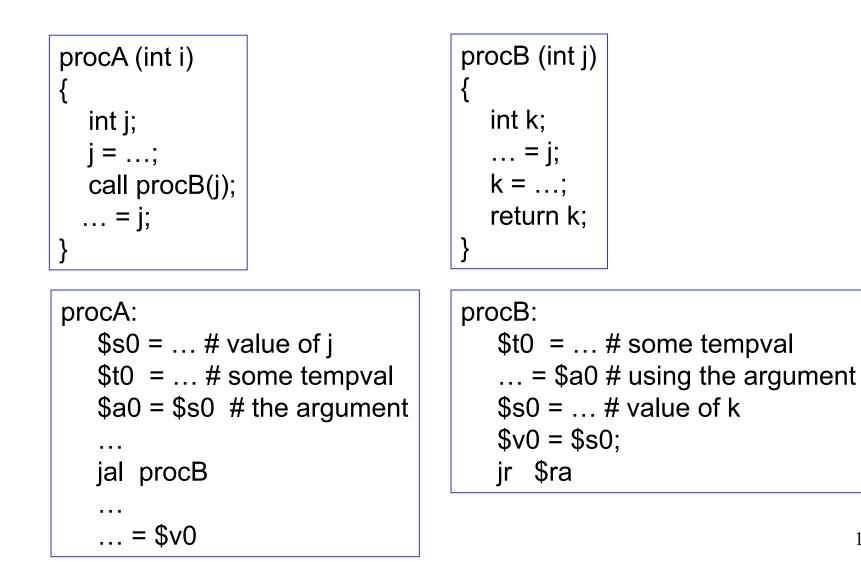
- The 32 MIPS registers are partitioned as follows:
 - Register 0 : \$zero Regs 2-3 : \$v0, \$v1 Regs 4-7 : \$a0-\$a3 Regs 8-15 : \$t0-\$t7 Regs 16-23: \$s0-\$s7 Regs 24-25: \$t8-\$t9 Reg 28 : \$gp Reg 29 : \$sp • Reg 30 : \$fp Reg 31 : \$ra

always stores the constant 0 return values of a procedure input arguments to a procedure temporaries variables more temporaries global pointer stack pointer frame pointer return address

Memory Organization



Procedure Calls/Returns



Saves and Restores

- Caller saves:
 - \$ra, \$a0, \$t0, \$fp (if reqd)
- Callee saves:

\$\$0

As every element is saved on stack, the stack pointer is decremented

procA:

\$s0 = ... # value of j \$t0 = ... # some tempval \$a0 = \$s0 # the argument ... jal procB = \$v0 procB:

\$t0 = ... # some tempval ... = \$a0 # using the argument \$s0 = ... # value of k \$v0 = \$s0; jr \$ra

Example 2

```
int fact (int n)
```

```
if (n < 1) return (1);
else return (n * fact(n-1));
```

Notes:

{

The caller saves \$a0 and \$ra in its stack space. Temps are never saved.

fact:	
addi	\$sp, \$sp, -8
SW	\$ra, 4(\$sp)
SW	\$a0, 0(\$sp)
slti	\$t0, \$a0, 1
beq	\$t0, \$zero, L1
addi	\$v0, \$zero, 1
addi	\$sp, \$sp, 8
jr	\$ra
L1:	
addi	\$a0, \$a0, -1
jal	fact
lw	\$a0, 0(\$sp)
W	\$ra, 4(\$sp)
addi	\$sp, \$sp, 8
mul	\$v0, \$a0, \$v0
jr	\$ra

Recap – Numeric Representations

- Decimal $35_{10} = 3 \times 10^1 + 5 \times 10^0$
- Binary $00100011_2 = 1 \times 2^5 + 1 \times 2^1 + 1 \times 2^0$
- Hexadecimal (compact representation) 0x 23 or $23_{hex} = 2 \times 16^1 + 3 \times 16^0$

0-15 (decimal) \rightarrow 0-9, a-f (hex)

Dec	Binary	Hex									
0	0000	00	4	0100	04	8	1000	08	12	1100	0c
1	0001	01	5	0101	05	9	1001	09	13	1101	0d
2	0010	02	6	0110	06	10	1010	0a	14	1110	0e
3	0011	03	7	0111	07	11	1011	0b	15	1111	Of
											18

1

2's Complement

 $\begin{array}{l} 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two}=0\ _{ten}\\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two}=1\ _{ten}\\ \dots\\ 0111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ 1111\ _{two}=2^{31}\text{-}1\\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ _{two}=-2^{31}\ -1)\\ 1000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0001\ _{two}=-(2^{31}-1)\ 1000\ 000\ 000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 0000\ 00\ 00\$

Note that the sum of a number x and its inverted representation x' always equals a string of 1s (-1).

x + x' = -1x' + 1 = -x-x = x' + 1... hence, can compute the negative of a number byinverting all bits and adding 1

This format can directly undergo addition without any conversions! Each number represents the quantity

 $x_{31} - 2^{31} + x_{30} 2^{30} + x_{29} 2^{29} + ... + x_1 2^1 + x_0 2^0$

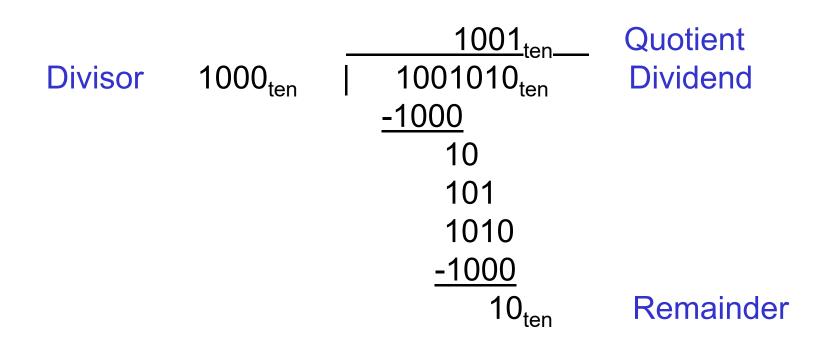
Multiplication Example

Multiplicand 1000_{ten} X 1001_{ten} 1000 0000 0000 0000 1000 0000 1000 1000 Product 1001000_{ten}

In every step

- multiplicand is shifted
- next bit of multiplier is examined (also a shifting step)
- if this bit is 1, shifted multiplicand is added to the product

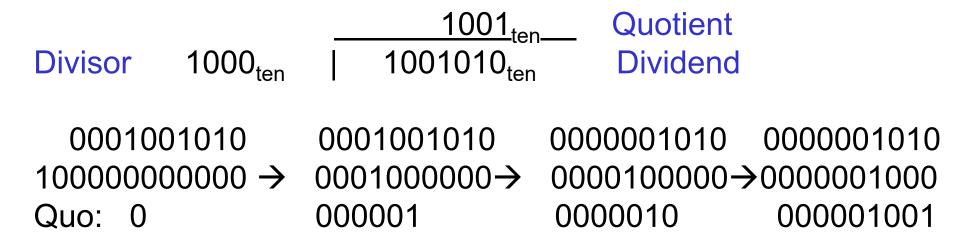
Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

Division



At every step,

- shift divisor right and compare it with current dividend
- if divisor is larger, shift 0 as the next bit of the quotient
- if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient

• Divide $7_{ten} (0000 \ 0111_{two})$ by $2_{ten} (0010_{two})$

Iter	Step	Quot	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
1	Rem = Rem – Div	0000	0010 0000	1110 0111
	Rem < 0 ➔ +Div, shift 0 into Q	0000	0010 0000	0000 0111
	Shift Div right	0000	0001 0000	0000 0111
2	Same steps as 1	0000	0001 0000	1111 0111
		0000	0001 0000	0000 0111
		0000	0000 1000	0000 0111
3	Same steps as 1	0000	0000 0100	0000 0111
4	Rem = Rem – Div	0000	0000 0100	0000 0011
	Rem >= 0 ➔ shift 1 into Q	0001	0000 0100	0000 0011
	Shift Div right	0001	0000 0010	0000 0011
5	Same steps as 4	0011	0000 0001	0000 0001

- 20.45 decimal = ? Binary
- 20 decimal = 10100 binary
- $0.45 \times 2 = 0.9$ (not greater than 1, first bit after binary point is 0) $0.90 \times 2 = 1.8$ (greater than 1, second bit is 1, subtract 1 from 1.8) $0.80 \times 2 = 1.6$ (greater than 1, third bit is 1, subtract 1 from 1.6) $0.60 \times 2 = 1.2$ (greater than 1, fourth bit is 1, subtract 1 from 1.2) $0.20 \times 2 = 0.4$ (less than 1, fifth bit is 0) $0.40 \times 2 = 0.8$ (less than 1, sixth bit is 0) $0.80 \times 2 = 1.6$ (greater than 1, seventh bit is 1, subtract 1 from 1.6) ... and the pattern repeats

10100.01110011001100...Normalized form = $1.0100011100110011... \times 2^4$ Final representation: (-1)^S x (1 + Fraction) x 2^(Exponent – Bias)

• Represent -0.75_{ten} in single and double-precision formats

```
Single: (1 + 8 + 23)
1 0111 1110 1000...000
```

```
Double: (1 + 11 + 52)
1 0111 1111 110 100...000
```

- What decimal number is represented by the following single-precision number?
 - 1 1000 0001 01000...0000

-5.0

FP Addition – Binary Example

Consider the following binary example

```
1.010 \times 2^{1} + 1.100 \times 2^{3}
Convert to the larger exponent:
0.0101 \times 2^3 + 1.1000 \times 2^3
Add
1.1101 x 2<sup>3</sup>
Normalize
1.1101 x 2<sup>3</sup>
Check for overflow/underflow
Round
Re-normalize
```

Boolean Algebra

•
$$\overline{A + B} = \overline{A} \cdot \overline{B}$$

•
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Α	В	С	E
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	0

Any truth table can be expressed as a sum of products

 $(A \cdot B \cdot \overline{C}) + (A \cdot C \cdot \overline{B}) + (C \cdot B \cdot \overline{A})$

- Can also use "product of sums"
- Any equation can be implemented with an array of ANDs, followed by an array of ORs

- Ripple-Carry adder each 1-bit adder feeds its carry-out to next stage simple design, but we must wait for the carry to propagate thru all bits
- Carry-Lookahead adder each bit can be represented by an equation that only involves input bits (a_i, b_i) and initial carry-in (c₀) -- this is a complex equation, so it's broken into sub-parts

```
For bits a_i, b_i, and c_i, a carry is generated if a_i \cdot b_i = 1 and a carry is propagated if a_i + b_i = 1

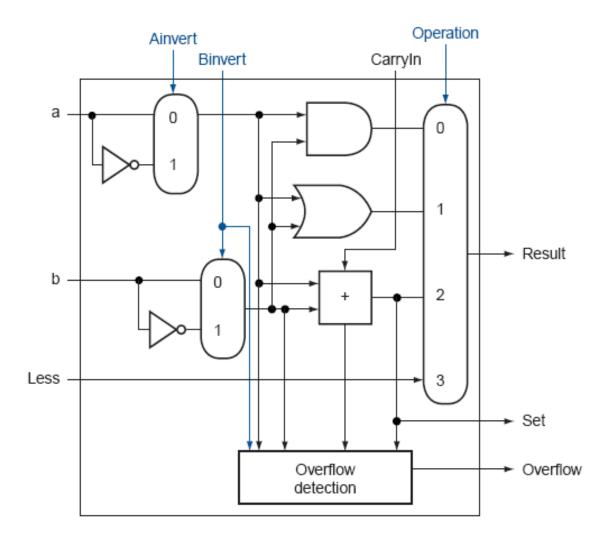
C_{i+1} = g_i + p_i \cdot C_i
```

Similarly, compute these values for a block of 4 bits, then for a block of 16 bits, then for a block of 64 bits....Finally, the carry-out for the 64th bit is represented by an equation such as this:

 $C_4 = G_3 + G_2 P_3 + G_1 P_2 P_3 + G_0 P_1 P_2 P_3 + C_0 P_0 P_1 P_2 P_3$

Each of the sub-terms is also a similar expression

32-bit ALU



29

Control Lines

What are the values of the control lines and what operations do they correspond to?

	Ai	Bn	Ор
AND	0	0	00
OR	0	0	01
Add	0	0	10
Sub	0	1	10
SLT	0	1	11
NOR	1	1	00

