Lecture 13: Adders, Sequential Circuits

 Today’s topics:

= Carry-lookahead adder
= Clocks, latches, sequential circuits

Incorporating slt

Ainvert ':]peratiﬁn
« Perform a — b and check | Binvert carryn |
the sign !
J e =
« New signal (Less) that W L
is zero for ALU boxes - 1
1-31 I
*7 = Result
* The 31t box has a unit ° ﬂ' g P P
to detect overflow and :
sign — the sign bit
serves as the Less Less Y
signal for the Ot box I - Set
Owverflow = Dwverflow
detection

Source: H&P textbook

Incorporating beqg

 Performa —-b and
confirm that the
result is all zero’s

Ainvert

E:E : Carryln
| ql

a3l—
b31—»

00—

Carryln
ALU31
Less

Bnegate Operation
IR
a0 —={ Carryln Resulio
esu
b0 —» ALUO » -
Less T—
CarryQut
b L
Lk Y l
al — Carryln
b1 ALLT1 Resultl | _ - .
00— Less ;’,
CarryQOut : ol
* Yy ¥ v
a2 —» Carryln
b2 ALU2 Result2 .
00— Less
CarryQut

Result31 e

. -

Set

= QOverflow

3

Source: H&P textbook

Control Lines

What are the values
of the control lines
and what operations
do they correspond to?

Ainvert

adl—
b31—»

00—

Carryln
ALU31
Less

E:E : Carryln
| RN

Bnegate Operation
1RR.
a0 —=| Carryln Rasulto
esu
bQ — ALUO ® -
Less T—
CarryOut
«
Ty Y L
al —=| Carryln
b1 ALUy1 Resultl | _ ~ "
0— Less T—'
CarryOut : Zero
¢ L Y L
a2 —» Carryln
b2 —» ALU2 Result2 .
0 — Less
CarryQOut

Result31 _[-

=

Set

= Overflow

Source: H&P textbook 4

Control Lines

What are the values
of the control lines

and what operations {
do they correspond to?
a—»=

ALU operation

Ai Bn Op .

—= S 20
AND O 0 00 e
OR 0 0 01 > ALU |—= Resu
Add 0 0 10 L= Cverflow
Sub 0 1 10 o
SLT 0 1 11
NOR 1 1 00
NAND 1 1 01

CarryOut

Source: H&P textbook

Speed of Ripple Carry

* The carry propagates thru every 1-bit box: each 1-bit box sequentially
implements AND and OR - total delay is the time to go through 64 gates!

« We've already seen that any logic equation can be expressed as the
sum of products — so it should be possible to compute the result by
going through only 2 gates!

- Caveat: need many parallel gates and each gate may have a very
large number of inputs — it is difficult to efficiently build such large
gates, so we’ll find a compromise:

= moderate number of gates
= moderate number of inputs to each gate
= moderate number of sequential gates traversed

Computing CarryOut

Carryln1 = b0.Carryln0 + a0.CarryIlnO + a0.b0
Carryln2 = b1.Carryln1 + a1.Carryln1 + a1.b1
= b1.b0.cO0 + b1.a0.cO0 + b1.a0.b0 +
a1.b0.cO0 + a1.a0.cO0 + a1.a0.b0 + a1.b1

Carryln32 = a really large sum of really large products
* Potentially fast implementation as the result is computed

by going thru just 2 levels of logic — unfortunately, each
gate is enormous and slow

Generate and Propagate

Equation re-phrased:
Ci+1 = ai.bi + ai.Ci + bi.Ci
= (ai.bi) + (ai + bi).Ci

Stated verbally, the current pair of bits will generate a carry
if they are both 1 and the current pair of bits will propagate
a carry if either is 1

Generate signal = ai.bi
Propagate signal = ai + bi

Therefore, Ci+1 = Gi + Pi . Ci

Generate and Propagate

c1 =90 + p0.cO
c2=9g1+p1l.ct
=g1+p1.g0 + p1.p0.cO
c3 =92+ p2.g1 + p2.p1.g0 + p2.p1.p0.c0
c4d = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0.cO

a carry was just generated, or

a carry was generated in the Ia

a carry was generated two step
the next two stages, or

a carry was generated N steps back and was propagated by every
single one of the N next stages

and was propagated by both

9

Divide and Conquer

* The equations on the previous slide are still difficult to implement as
logic functions — for the 32" bit, we must AND every single propagate
bit to determine what becomes of cO (among other things)

* Hence, the bits are broken into groups (of 4) and each group
computes its group-generate and group-propagate

* For example, to add 32 numbers, you can partition the task as a tree

AN AN AN AN

10

P and G for 4-bit Blocks

« Compute PO and GO (super-propagate and super-generate) for the
first group of 4 bits (and similarly for other groups of 4 bits)
PO = p0.p1.p2.p3
G0 =g3 +g2.p3 + g1.p2.p3 + g0.p1.p2.p3

 Carry out of the first group of 4 bits is
C1=GO0+ PO0.cO
C2=G1+P1.G0 + P1.P0.cO
C3=G2+ (P2.G1) + (P2.P1.G0) + (P2.P1.P0.c0)
C4 =G3 + (P3.G2) + (P3.P2.G1) + (P3.P2.P1.GO) + (P3.P2.P1.P0.c0)

* By having a tree of sub-computations, each AND, OR gate has few
inputs and logic signals have to travel through a modest set of

gates (equal to the height of the tree)

11

Example

Add A 0001 1010 0011 0011
B 1110 0101 1110 1011

g 0000 0000 0010 0011
p 1111 1111 1111 1011

12

Carry Look-Ahead Adder

* 16-bit Ripple-carry
takes 32 steps

* This design takes
how many steps?

Carryln
|
al —=1 Carrylin
b0 —= Result0—3
al —
b1 —
a2 —= ALUO
b2 — PO —= pi
ad —= = qi
b3 GO o g 1 .
sl Carry-lookahead unit
a4 —=| Carryln
b — = Result4-7
ab —»
b5 —
ab —={ ALU1
hE — P{ —— pi+1
a7l —» = gi+ 1
b7 — G . g
17 ci+2
a8 —= Carryln
b8 —=| Result8—11
a9 —»
b9 —
alo—= ALU2
b10 —= p2 — pi+2
all —» —— gi+2
o G2 g
C3 g
l— ci+3
al2 —= Carryln
b12 —- Result12-15
a13 —»
b13 —+
al4 —=| ALU3
b14 —» P3 — pi+3
als —= — ' Qi+ 3
16— G3 g

C4

ﬁch-d

CarryOut

Source: H&P textbook

13

Clocks

* A microprocessor is composed of many different circuits
that are operating simultaneously — if each circuit X takes in
inputs at time Tly, takes time TE, to execute the logic,
and produces outputs at time TO,, imagine the
complications in co-ordinating the tasks of every circuit

» A major school of thought (used in most processors built
today): all circuits on the chip share a clock signal (a
square wave) that tells every circuit when to accept
iInputs, how much time they have to execute the logic, and
when they must produce outputs

R 5 O

Clock Terminology

Rising clock edge

Cycle time

le Y|
< »

mm

Falling clock edge

4 GHz = clock speed = 1 1 .
cycle time 250 ps

15

Sequential Circuits

 Until now, circuits were combinational — when inputs change, the
outputs change after a while (time = logic delay thru circuit)

Inputs Outputs

« We want the clock to act like a start and stop signal — a “latch” is
a storage device that separates these circuits — it ensures that
the inputs to the circuit do not change during a clock cycle

Clock Clock
¥ ¥

Outputs

»

Inputs—

Latch Latch

Sequential Circuits

» Sequential circuit: consists

of combinational circuit and) ‘
a storage element Inputs -
Clock —
e
- At the start of the clock Inputs Outputs

cycle, the rising edge
causes the “state” storage
to store some input values

* This state will not change for an entire cycle (until next rising edge)

* The combinational circuit has some time to accept the value
of “state” and “inputs” and produce “outputs”

« Some of the outputs (for example, the value of next “state”) may feed

back (but through the latch so they're only seen in the next cycle) ,

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

