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Lecture 7: Examples, MARS

• Today’s topics: 

 More examples
 MARS intro
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Saving Conventions

• Caller saved: Temp registers $t0-$t9 (the callee won’t
bother saving these, so save them if you care), $ra (it’s
about to get over-written), $a0-$a3 (so you can put in
new arguments)

• Callee saved: $s0-$s7 (these typically contain “valuable”
data)

• Read the Notes on the class webpage on this topic!
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int   fact  (int n)
{

if (n < 1)  return (1);
else return (n * fact(n-1));

}

fact:
slti $t0, $a0, 1
beq $t0, $zero, L1
addi $v0, $zero, 1
jr $ra

L1:
addi $sp, $sp, -8
sw $ra, 4($sp)
sw $a0, 0($sp)
addi $a0, $a0, -1
jal fact
lw $a0, 0($sp)
lw $ra, 4($sp)
addi $sp, $sp, 8
mul $v0, $a0, $v0
jr $ra

Notes:
The caller saves $a0 and $ra
in its stack space.
Temp register $t0 is never saved.

Example 2 (pg. 101)
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Dealing with Characters

• Instructions are also provided to deal with byte-sized
and half-word quantities: lb (load-byte), sb, lh, sh

• These data types are most useful when dealing with
characters, pixel values, etc.

• C employs ASCII formats to represent characters – each
character is represented with 8 bits and a string ends in
the null character (corresponding to the 8-bit number 0);
A is 65, a is 97



5

Example 3 (pg. 108)

Convert to assembly:
void strcpy (char x[], char y[])
{

int i;
i=0;
while  ((x[i] = y[i]) != `\0’)
i += 1;

}

strcpy:
addi     $sp, $sp, -4
sw       $s0, 0($sp)
add      $s0, $zero, $zero
L1: add  $t1, $s0, $a1
lb         $t2, 0($t1)
add      $t3, $s0, $a0
sb        $t2, 0($t3)
beq      $t2, $zero, L2
addi     $s0, $s0, 1
j           L1
L2: lw    $s0, 0($sp)
addi     $sp, $sp, 4
jr          $ra

Notes:
Temp registers not saved.
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Large Constants

• Immediate instructions can only specify 16-bit constants

• The lui instruction is used to store a 16-bit constant into
the upper 16 bits of a register… combine this with an
OR instruction to specify a 32-bit constant

• The destination PC-address in a conditional branch is
specified as a 16-bit constant, relative to the current PC

• A jump (j) instruction can specify a 26-bit constant; if more
bits are required, the jump-register (jr) instruction is used
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Starting a Program

C Program

Assembly language program

Object: machine language module Object: library routine (machine language)

Executable: machine language program

Memory

Compiler

Assembler

Linker

Loader

x.c

x.s

x.o x.a, x.so

a.out
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Role of Assembler

• Convert pseudo-instructions into actual hardware
instructions – pseudo-instrs make it easier to program
in assembly – examples: “move”, “blt”, 32-bit immediate
operands, etc. 

• Convert assembly instrs into machine instrs – a separate
object file (x.o) is created for each C file (x.c) – compute
the actual values for instruction labels – maintain info
on external references and debugging information
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Role of Linker

• Stitches different object files into a single executable

 patch internal and external references
 determine addresses of data and instruction labels
 organize code and data modules in memory

• Some libraries (DLLs) are dynamically linked – the
executable points to dummy routines – these dummy
routines call the dynamic linker-loader so they can
update the executable to jump to the correct routine
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Full Example – Sort in C (pg. 133)

• Allocate registers to program variables
• Produce code for the program body
• Preserve registers across procedure invocations

void sort (int v[ ], int n)
{

int i, j;
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}

}

void swap (int v[ ], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
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The swap Procedure

• Register allocation: $a0 and $a1 for the two arguments, $t0 for the
temp variable – no need for saves and restores as we’re not using
$s0-$s7 and this is a leaf procedure (won’t need to re-use $a0 and $a1)

swap:    sll     $t1, $a1, 2
add   $t1, $a0, $t1 
lw     $t0, 0($t1)    
lw     $t2, 4($t1)    

sw     $t2, 0($t1)   
sw     $t0, 4($t1)
jr      $ra

void swap (int v[], int k)
{

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
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The sort Procedure

• Register allocation: arguments v and n use $a0 and $a1, i and j use
$s0 and $s1; must save $a0 and $a1 before calling the leaf
procedure

• The outer for loop looks like this: (note the use of pseudo-instrs)

move   $s0, $zero            # initialize the loop
loopbody1: bge      $s0, $a1, exit1     # will eventually use slt and beq

… body of inner loop …
addi     $s0, $s0, 1
j            loopbody1

exit1: 
for (i=0; i<n; i+=1) {

for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {
swap (v,j);

}
}
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The sort Procedure

• The inner for loop looks like this:

addi $s1, $s0, -1          # initialize the loop
loopbody2: blt $s1, $zero, exit2   # will eventually use slt and beq

sll $t1,  $s1, 2
add      $t2, $a0, $t1
lw $t3, 0($t2)
lw $t4, 4($t2)
ble       $t3, $t4, exit2
… body of inner loop …
addi $s1, $s1, -1
j            loopbody2

exit2: for (i=0; i<n; i+=1) {
for (j=i-1; j>=0 && v[j] > v[j+1]; j-=1) {

swap (v,j);
}

}
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Saves and Restores

• Since we repeatedly call “swap” with $a0 and $a1, we begin “sort” by
copying its arguments into $s2 and $s3 – must update the rest of the
code in “sort” to use $s2 and $s3 instead of $a0 and $a1

• Must save $ra at the start of “sort” because it will get over-written when
we call “swap”

• Must also save $s0-$s3 so we don’t overwrite something that belongs
to the procedure that called “sort”
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Saves and Restores

sort:    addi     $sp, $sp, -20
sw       $ra, 16($sp)
sw       $s3, 12($sp)
sw       $s2, 8($sp)
sw       $s1, 4($sp)
sw       $s0, 0($sp)
move    $s2, $a0
move    $s3, $a1
…

move    $a0, $s2        # the inner loop body starts here
move    $a1, $s1
jal         swap
…

exit1:  lw         $s0, 0($sp)
…

addi       $sp, $sp, 20
jr            $ra

9 lines of C code  35 lines of assembly
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MARS

• MARS is a simulator that reads in an assembly program
and models its behavior on a MIPS processor

• Note that a “MIPS add instruction” will eventually be
converted to an add instruction for the host computer’s
architecture – this translation happens under the hood

• To simplify the programmer’s task, it accepts
pseudo-instructions, large constants, constants in 
decimal/hex formats, labels, etc.

• The simulator allows us to inspect register/memory
values to confirm that our program is behaving correctly
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MARS Intro

• Directives, labels, global pointers, system calls
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MARS Intro
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MARS Intro

• Read the google doc on the class webpage for details!
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Example Print Routine

.data
str:     .asciiz “the answer is ”

.text
li      $v0, 4               # load immediate; 4 is the code for print_string
la     $a0, str            #  the print_string syscall expects the string

#  address as the argument; la is the instruction
#  to load the address of the operand (str)

syscall #  MARS will now invoke syscall-4
li      $v0, 1              #  syscall-1 corresponds to print_int
li      $a0, 5              #  print_int expects the integer as its argument
syscall #  MARS will now invoke syscall-1
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Example

• Write an assembly program to prompt the user for two numbers and
print the sum of the two numbers
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Example
.data

str1:  .asciiz  “Enter 2 numbers:”
.text                                                     str2:  .asciiz  “The sum is ”

li   $v0, 4
la  $a0, str1
syscall
li   $v0, 5
syscall
add  $t0, $v0, $zero
li   $v0, 5
syscall                                
add  $t1, $v0, $zero           
li   $v0, 4       
la  $a0, str2         
syscall
li    $v0, 1
add  $a0, $t1, $t0
syscall
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IA-32 Instruction Set

• Intel’s IA-32 instruction set has evolved over 20 years –
old features are preserved for software compatibility

• Numerous complex instructions – complicates hardware
design (Complex Instruction Set Computer – CISC)

• Instructions have different sizes, operands can be in
registers or memory, only 8 general-purpose registers,
one of the operands is over-written

• RISC instructions are more amenable to high performance
(clock speed and parallelism) – modern Intel processors
convert IA-32 instructions into simpler micro-operations
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Endian-ness

Two major formats for transferring values between registers and memory

Memory:  low address  45   7b  87  7f    high address

Little-endian register: the first byte read goes in the low end of the register
Register:   7f   87  7b  45

Most-significant bit                        Least-significant bit                 (x86)

Big-endian register: the first byte read goes in the big end of the register
Register:   45  7b  87  7f

Most-significant bit                         Least-significant bit               (MIPS, IBM)
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