Lecture 6: Assembly Programs

- Today's topics:
 - Control instructions
 - Procedures
 - Examples

- Conditional branch: Jump to instruction L1 if register1 equals register2: beq register1, register2, L1 Similarly, bne and slt (set-on-less-than)
- Unconditional branch:

j L1

jr \$s0 (useful for big jumps and procedure returns)

```
Convert to assembly:
```

if (i == j) f = g+h; else f = g-h;

- Conditional branch: Jump to instruction L1 if register1 equals register2: beq register1, register2, L1 Similarly, bne and slt (set-on-less-than)
- Unconditional branch:

L1

jr \$s0 (useful for big jumps and procedure returns)

Convert to assembly: if (i == j) bne \$s3, \$s4, Else f = g+h; add \$s0, \$s1, \$s2 else j Exit f = g-h; Else: sub \$s0, \$s1, \$s2 Exit: Exit: Sub \$s0, \$s1, \$s2

Convert to assembly:

```
while (save[i] == k)
i += 1;
```

Values of i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

Example

Convert to assembly:

while (save[i] == k) i += 1;

Values of i and k are in \$s3 and \$s5 and base of array save[] is in \$s6

Loop:	sll add lw bne addi i	\$t1, \$s3, 2 \$t1, \$t1, \$s6 \$t0, 0(\$t1) \$t0, \$s5, Exit \$s3, \$s3, 1 Loop
Exit:	J	Loop
Loop:	sll add lw bne addi addi j	\$t1, \$s3, 2 \$t1, \$t1, \$s6 \$t0, 0(\$t1) \$t0, \$s5, Exit \$s3, \$s3, 1 \$t1, \$t1, 4 Loop
Exit:		5

Registers

- The 32 MIPS registers are partitioned as follows:
 - Register 0 : \$zero Regs 2-3 : \$v0, \$v1 Regs 4-7 : \$a0-\$a3 Regs 8-15 : \$t0-\$t7 Regs 16-23: \$s0-\$s7 Regs 24-25: \$t8-\$t9 Reg 28 : \$gp Reg 29 : \$sp • Reg 30 : \$fp Reg 31 : \$ra

always stores the constant 0 return values of a procedure input arguments to a procedure temporaries variables more temporaries global pointer stack pointer frame pointer return address

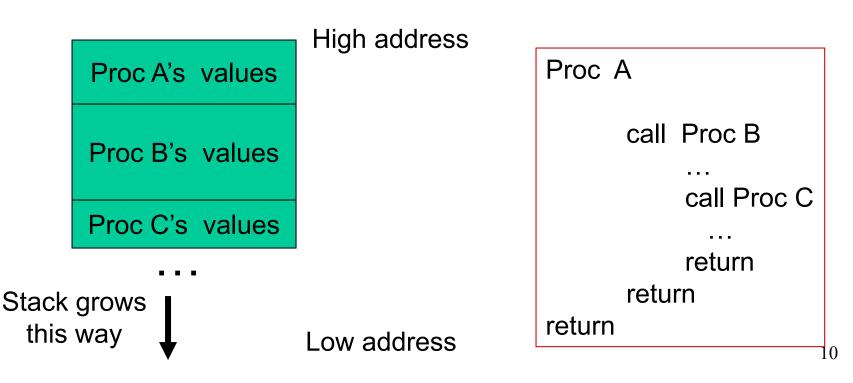
Procedures

- Local variables, AR, \$fp, \$sp
- Scratchpad and saves/restores
- Arguments and returns
- jal and \$ra

7

Procedures

- Each procedure (function, subroutine) maintains a scratchpad of register values – when another procedure is called (the callee), the new procedure takes over the scratchpad – values may have to be saved so we can safely return to the caller
 - parameters (arguments) are placed where the callee can see them
 - control is transferred to the callee
 - acquire storage resources for callee
 - execute the procedure
 - place result value where caller can access it
 - return control to caller


- A special register (storage not part of the register file) maintains the address of the instruction currently being executed – this is the program counter (PC)
- The procedure call is executed by invoking the jump-and-link (jal) instruction – the current PC (actually, PC+4) is saved in the register \$ra and we jump to the procedure's address (the PC is accordingly set to this address)

jal NewProcedureAddress

- Since jal may over-write a relevant value in \$ra, it must be saved somewhere (in memory?) before invoking the jal instruction
- How do we return control back to the caller after completing the callee procedure?

The register scratchpad for a procedure seems volatile – it seems to disappear every time we switch procedures – a procedure's values are therefore backed up in memory on a stack

Saves and Restores

Storage Management on a Call/Return

- A new procedure must create space for all its variables on the stack
- Before/after executing the jal, the caller/callee must save relevant values in \$s0-\$s7, \$a0-\$a3, \$ra, temps into the stack space
- Arguments are copied into \$a0-\$a3; the jal is executed
- After the callee creates stack space, it updates the value of \$sp
- Once the callee finishes, it copies the return value into \$v0, frees up stack space, and \$sp is incremented
- On return, the caller/callee brings in stack values, ra, temps into registers
- The responsibility for copies between stack and registers may fall upon either the caller or the callee

Example 1 (pg. 98)

```
int leaf_example (int g, int h, int i, int j)
{
    int f;
    f = (g + h) - (i + j);
    return f;
}
```

Notes:

In this example, the callee took care of saving the registers it needs.

The caller took care of saving its \$ra and \$a0-\$a3.

leaf_example:		
addi	\$sp, \$sp, -12	
SW	\$t1, 8(\$sp)	
SW	\$t0, 4(\$sp)	
SW	\$s0, 0(\$sp)	
add	\$t0, \$a0, \$a1	
add	\$t1, \$a2, \$a3	
sub	\$s0, \$t0, \$t1	
add	\$v0, \$s0, \$zero	
W	\$s0, 0(\$sp)	
W	\$t0, 4(\$sp)	
W	\$t1, 8(\$sp)	
addi	\$sp, \$sp, 12	
jr	\$ra	

Could have avoided using the stack altogether.

 Caller saved: Temp registers \$t0-\$t9 (the callee won't bother saving these, so save them if you care), \$ra (it's about to get over-written), \$a0-\$a3 (so you can put in new arguments)

- Callee saved: \$s0-\$s7 (these typically contain "valuable" data)
- Read the Notes on the class webpage on this topic

Example 2 (pg. 101)

```
int fact (int n)
```

```
if (n < 1) return (1);
else return (n * fact(n-1));
```

Notes:

{

The caller saves \$a0 and \$ra in its stack space.

Temp register \$t0 is never saved.

fact:	
slti	\$t0, \$a0, 1
beq	\$t0, \$zero, L1
addi	\$v0, \$zero, 1
jr	\$ra
L1:	
addi	\$sp, \$sp, -8
SW	\$ra, 4(\$sp)
SW	\$a0, 0(\$sp)
addi	\$a0, \$a0, -1
jal	fact
lw	\$a0, 0(\$sp)
lw	\$ra, 4(\$sp)
addi	\$sp, \$sp, 8
mul	\$v0, \$a0, \$v0
jr	\$ra