
1

Lecture 4: MIPS Instruction Set

• Today’s topics:

 MIPS instructions
 Code examples

2

Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions

We will later discuss RISC vs CISC

3

Example

C code a = b + c + d + e;
translates into the following assembly code:

add a, b, c add a, b, c
add a, a, d or add f, d, e
add a, a, e add a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
assembly code

• Some sequences are better than others… the second
sequence needs one more (temporary) variable f

4

Subtract Example

C code f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:

5

Subtract Example

C code f = (g + h) – (i + j);
translates into the following assembly code:

add t0, g, h add f, g, h
add t1, i, j or sub f, f, i
sub f, t0, t1 sub f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later

6

Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

• To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
there can be only so many scratchpad registers

7

Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
Why not more? Why not less?

• Each register is 32-bit wide (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)…

8

Binary Stuff

• 8 bits = 1 Byte, also written as 8b = 1B

• 1 word = 32 bits = 4B

• 1KB = 1024 B = 210 B

• 1MB = 1024 x 1024 B = 220 B

• 1GB = 1024 x 1024 x 1024 B = 230 B

• A 32-bit memory address refers to a number between
0 and 232 – 1, i.e., it identifies a byte in a 4GB memory

9

Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw $t0, memory-address

Store word
sw $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory

10

Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int a, b, c, d[10]

Memory

…

Base address

11

Memory Organization

$gp points to area in memory that saves global variables

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)
$gp

12

Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0, 8($t3)

any register
a constant that is added to the register in brackets

13

Memory Instruction Format

• The format of a store instruction:

source register
destination address

sw $t0, 8($t3)

any register
a constant that is added to the register in brackets

14

Example

int a, b, c, d[10];

addi $gp, $zero, 1000 # assume that data is stored at
base address 1000; placed in $gp;
$zero is a register that always
equals zero

lw $s1, 0($gp) # brings value of a into register $s1
lw $s2, 4($gp) # brings value of b into register $s2
lw $s3, 8($gp) # brings value of c into register $s3
lw $s4, 12($gp) # brings value of d[0] into register $s4
lw $s5, 16($gp) # brings value of d[1] into register $s5

15

Example

Convert to assembly:

C code: d[3] = d[2] + a;

16

Example

Convert to assembly:

C code: d[3] = d[2] + a;

Assembly (same assumptions as previous example):
lw $s0, 0($gp) # a is brought into $s0
lw $s1, 20($gp) # d[2] is brought into $s1
add $t1, $s0, $s1 # the sum is in $t1
sw $t1, 24($gp) # $t1 is stored into d[3]

Assembly version of the code continues to expand!

17

Memory Organization

• The space allocated on stack by a procedure is termed the activation
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the
end – variable addresses are specified relative to $fp as $sp may
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)

18

Recap – Numeric Representations

• Decimal 3510 = 3 x 101 + 5 x 100

• Binary 001000112 = 1 x 25 + 1 x 21 + 1 x 20

• Hexadecimal (compact representation)
0x 23 or 23hex = 2 x 161 + 3 x 160

0-15 (decimal)  0-9, a-f (hex)

Dec Binary Hex
0 0000 00
1 0001 01
2 0010 02
3 0011 03

Dec Binary Hex
4 0100 04
5 0101 05
6 0110 06
7 0111 07

Dec Binary Hex
8 1000 08
9 1001 09

10 1010 0a
11 1011 0b

Dec Binary Hex
12 1100 0c
13 1101 0d
14 1110 0e
15 1111 0f

19

Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

• Putting a constant in a register requires addition to
register $zero (a special register that always has zero in it)
-- since every instruction requires at least one operand

to be a register

• For example, putting the constant 1000 into a register:

addi $s0, $zero, 1000

20

Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add $t0, $s1, $s2
000000 10001 10010 01000 00000 100000
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits
op rs rt rd shamt funct

opcode source source dest shift amt function

I-type instruction lw $t0, 32($s3)
6 bits 5 bits 5 bits 16 bits

opcode rs rt constant

21

Logical Operations

Logical ops C operators Java operators MIPS instr

Shift Left << << sll
Shift Right >> >>> srl
Bit-by-bit AND & & and, andi
Bit-by-bit OR | | or, ori
Bit-by-bit NOT ~ ~ nor

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21

