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Lecture 4: MIPS Instruction Set

• Today’s topics: 

 MIPS instructions
 Code examples
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Instruction Set

• Important design principles when defining the
instruction set architecture (ISA):

 keep the hardware simple – the chip must only
implement basic primitives and run fast
 keep the instructions regular – simplifies the

decoding/scheduling of instructions

We will later discuss RISC vs CISC
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Example

C code    a = b + c + d + e;
translates into the following assembly code:

add  a, b, c                    add  a, b, c
add  a, a, d         or        add  f, d, e
add  a, a, e                    add  a, a, f

• Instructions are simple: fixed number of operands (unlike C)
• A single line of C code is converted into multiple lines of
assembly code

• Some sequences are better than others… the second
sequence needs one more (temporary) variable  f
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Subtract Example

C code    f = (g + h) – (i + j);

Assembly code translation with only add and sub instructions:
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Subtract Example

C code    f = (g + h) – (i + j);
translates into the following assembly code:

add  t0, g, h                add  f, g, h  
add  t1,  i, j         or     sub   f, f, i
sub  f,   t0, t1              sub   f, f, j

• Each version may produce a different result because
floating-point operations are not necessarily
associative and commutative… more on this later
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Operands

• In C, each “variable” is a location in memory

• In hardware, each memory access is expensive – if 
variable a is accessed repeatedly, it helps to bring the
variable into an on-chip scratchpad and operate on the
scratchpad (registers)

• To simplify the instructions, we require that each
instruction (add, sub) only operate on registers

• Note: the number of operands (variables) in a C program is
very large; the number of operands in assembly is fixed…
there can be only so many scratchpad registers
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Registers

• The MIPS ISA has 32 registers (x86 has 8 registers) –
Why not more? Why not less?

• Each register is 32-bit wide  (modern 64-bit architectures
have 64-bit wide registers)

• A 32-bit entity (4 bytes) is referred to as a word

• To make the code more readable, registers are
partitioned as $s0-$s7 (C/Java variables), $t0-$t9
(temporary variables)…
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Binary Stuff

• 8 bits = 1 Byte, also written as 8b = 1B

• 1 word = 32 bits = 4B

• 1KB = 1024 B = 210 B

• 1MB = 1024 x 1024 B = 220 B

• 1GB = 1024 x 1024 x 1024 B = 230 B

• A 32-bit memory address refers to a number between
0 and 232 – 1, i.e., it identifies a byte in a 4GB memory
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Memory Operands

• Values must be fetched from memory before (add and sub)
instructions can operate on them

Load word
lw  $t0, memory-address

Store word
sw  $t0, memory-address

How is memory-address determined?

Register Memory

Register Memory
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Memory Address

• The compiler organizes data in memory… it knows the
location of every variable (saved in a table)… it can fill
in the appropriate mem-address for load-store instructions

int  a, b, c, d[10]

Memory

…

Base address
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Memory Organization

$gp points to area in memory that saves global variables

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)
$gp
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Memory Instruction Format

• The format of a load instruction:

destination register
source address

lw $t0,   8($t3)

any register
a constant that is added to the register in brackets
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Memory Instruction Format

• The format of a store instruction:

source register
destination address

sw $t0,   8($t3)

any register
a constant that is added to the register in brackets
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Example

int a, b, c, d[10];

addi $gp, $zero, 1000   # assume that data is stored at
# base address 1000; placed in $gp;
# $zero is a register that always
# equals zero

lw $s1, 0($gp)          # brings value of a into register $s1
lw $s2, 4($gp)          # brings value of b into register $s2
lw $s3, 8($gp)          # brings value of c into register $s3
lw $s4, 12($gp)        # brings value of d[0] into register $s4
lw $s5, 16($gp)        # brings value of d[1] into register $s5
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Example

Convert to assembly:

C code:     d[3]  = d[2] + a;
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Example

Convert to assembly:

C code:     d[3]  = d[2] + a;

Assembly (same assumptions as previous example):  
lw $s0, 0($gp)     #  a is brought into $s0
lw $s1, 20($gp)   #  d[2] is brought into $s1
add   $t1, $s0, $s1  #  the sum is in $t1
sw $t1, 24($gp)    #  $t1 is stored into d[3]

Assembly version of the code continues to expand!



17

Memory Organization

• The space allocated on stack by a procedure is termed the activation 
record (includes saved values and data local to the procedure) – frame
pointer points to the start of the record and stack pointer points to the 
end – variable addresses are specified relative to $fp as $sp may 
change during the execution of the procedure

• $gp points to area in memory that saves global variables
• Dynamically allocated storage (with malloc()) is placed on the heap

Stack

Dynamic data (heap)
Static data (globals)

Text (instructions)
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Recap – Numeric Representations

• Decimal        3510  =  3 x 101 + 5 x 100

• Binary          001000112  =  1 x 25 +  1 x 21 +  1 x 20

• Hexadecimal (compact representation)
0x 23    or   23hex     =   2 x 161 +  3 x 160

0-15 (decimal)    0-9, a-f  (hex)

Dec  Binary  Hex
0    0000     00
1    0001     01
2    0010     02
3    0011     03

Dec  Binary  Hex
4    0100     04
5    0101     05
6    0110     06
7    0111     07

Dec  Binary  Hex
8    1000     08
9    1001     09

10    1010     0a
11    1011     0b

Dec  Binary  Hex
12    1100     0c
13    1101     0d
14    1110     0e
15    1111     0f
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Immediate Operands

• An instruction may require a constant as input

• An immediate instruction uses a constant number as one
of the inputs (instead of a register operand)

• Putting a constant in a register requires addition to
register $zero (a special register that always has zero in it)
-- since every instruction requires at least one operand

to be a register

• For example, putting the constant 1000 into a register:

addi   $s0, $zero, 1000   
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Instruction Formats

Instructions are represented as 32-bit numbers (one word),
broken into 6 fields

R-type instruction add     $t0, $s1, $s2
000000     10001    10010    01000    00000    100000
6 bits         5 bits     5 bits     5 bits      5 bits      6 bits
op              rs           rt           rd         shamt     funct

opcode     source    source    dest    shift amt   function

I-type instruction               lw    $t0, 32($s3)
6 bits        5 bits    5 bits         16 bits

opcode         rs          rt            constant
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Logical Operations

Logical ops          C operators      Java operators         MIPS instr

Shift Left                    <<                        <<                         sll
Shift Right                  >>                       >>>                       srl
Bit-by-bit AND             &                         &                     and, andi
Bit-by-bit OR               |                           |                         or, ori
Bit-by-bit NOT            ~                          ~                           nor
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