Lecture 18: Pipelining

e Today'’s topics:
* Hazards and instruction scheduling
* Branch prediction
= Qut-of-order execution

« Reminder:

* Assignment 7 will be posted later today

Structural Hazards

« Example: a unified instruction and data cache -
stage 4 (MEM) and stage 1 (IF) can never coincide

* The later instruction and all its successors are delayed
until a cycle is found when the resource is free = these
are pipeline bubbles

 Structural hazards are easy to eliminate — increase the
number of resources (for example, implement a separate
Instruction and data cache)

Data Hazards

Time (in clock cycles) -
Value of CC1 cc2 CcCc3 cc4 CC5 CcC6 cCC7 ccs CcC9
register $2: 10 10 10 10 10/~20 =20 =20 =20 =20
Frogram
execution
order

(in instructions) o -

1
: - I~ |-Re
sub . $1,83 M SReg] o .

= i IJ M
1= . —I — -
and $12, ©, $5 IM — —=Reg DM — —E@
i — _J' il
or $13, 36, I |— _e - | DM e —EI
1l } ==
S ey £ pry 2hl
add $14, M= Reg |5 Hhipv— —Reg
L B]
L=t
sw 315, 100 — - |
r W FRea_| [DM} HRed

Bypassing

-

Time (in clock cycles)

CC1 cc 2 CCc3 cc4 CC5 CCo
Value of register $2: 10 10 10 10 10/-20 -20
Value of EX/MEM: X X X =20 X X
Value of MEM/WB: X X X X -20 X
Program
execufion
order
(in instructions)
and $12, . §5 Req
|8
or $13, $6,
add $14,
sw $15, 100
r

» Some data hazard stalls can be eliminated:

cC7y CC8
—20 —20
X X
X X

bypassing

ccH

-20
X
X

Example

add $1,$2,$3 [MHFREC > o] -
w $4, 8($1) | g g —D oM

Example

w $1,8($2) [MHFREC > o] -
S l\ — |
lw $4, 8($1) | g g —D oM

Example

w $1,8($2) [MHFREC > o] -
sw $1, 8($3) | g g —D‘ '@@_r iy

Control Hazards

« Simple technigues to handle control hazard stalls:

» for every branch, introduce a stall cycle (note: every
6t instruction is a branch!)

» assume the branch is not taken and start fetching the
next instruction — if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

» fetch the next instruction (branch delay slot) and
execute it anyway — if the instruction turns out to be
on the correct path, useful work was done — if the
Instruction turns out to be on the wrong path,
hopefully program state is not lost

Branch Delay Slots

a. From before b. From target
add $s1, $s2, $s3 sub $t4, $t5, 516 -—
if $s2 = 0 then ——
Delay slot add $s1, $s2, $s3
if $s1 = 0 then ——
~ Delay slot
Becomes Becomes
] y
-—
if $s2 = 0 then ——

dd $s1. $s2. $s3
add $s1, $52, $53 add $s1, $s2, 3s

if 3s1 = 0 then —

A

sub $t4, $t5, $t6

Pipeline without Branch Predictor

PC+4

10

Pipeline with Branch Predictor

Branch
Predictor

11

Bimodal Predictor

14 bits

12

2-Bit Prediction

e For each branch, maintain a 2-bit saturating counter:
If the branch is taken: counter = min(3,counter+1)
If the branch is not taken: counter = max(0,counter-1)
... sound familiar?

o If (counter >= 2), predict taken, else predict not taken

* The counter attempts to capture the common case for
each branch

13

Slowdowns from Stalls

» Perfect pipelining with no hazards - an instruction
completes every cycle (total cycles ~ num instructions)
—> speedup = increase Iin clock speed = num pipeline stages

* With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
Instruction completes

 Total cycles = number of instructions + stall cycles

14

Multicycle Instructions

ieger Lnk

EE:-:I

FRAnvagar mulsps

Y

O e Ernareiar Sokanos [LEEAL &1 ights nosonsed.

« Multiple parallel pipelines — each pipeline can have a different
number of stages

e Instructions can now complete out of order — must make sure

that writes to a register happen in the correct order
15

An Out-of-Order Processor Implementation

Reorder Buffer (ROB)

|

— [aw] [awy] [awy

Results written to
ROB and tags
broadcast to 1Q

Instr Fetch Queue

Issue Queue (1Q)
16

Title

e Bullet

17

