
1

Lecture 18: Pipelining

• Today’s topics: 

� Hazards and instruction scheduling
� Branch prediction
� Out-of-order execution

• Reminder:

� Assignment 7 will be posted later today



2

Structural Hazards

• Example: a unified instruction and data cache �
stage 4 (MEM) and stage 1 (IF) can never coincide

• The later instruction and all its successors are delayed
until a cycle is found when the resource is free � these
are pipeline bubbles

• Structural hazards are easy to eliminate – increase the
number of resources (for example, implement a separate
instruction and data cache)



3

Data Hazards



4

Bypassing

• Some data hazard stalls can be eliminated: bypassing



5

Example

add   $1, $2, $3

lw      $4, 8($1)



6

Example

lw    $1, 8($2) 

lw    $4, 8($1)



7

Example

lw    $1, 8($2) 

sw    $1, 8($3)



8

Control Hazards

• Simple techniques to handle control hazard stalls:
� for every branch, introduce a stall cycle (note: every

6th instruction is a branch!)
� assume the branch is not taken and start fetching the

next instruction – if the branch is taken, need hardware
to cancel the effect of the wrong-path instruction

� fetch the next instruction (branch delay slot) and
execute it anyway – if the instruction turns out to be
on the correct path, useful work was done – if the
instruction turns out to be on the wrong path,
hopefully program state is not lost



9

Branch Delay Slots



10

Pipeline without Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-target

PC + 4



11

Pipeline with Branch Predictor

IF (br)

PC

Reg Read
Compare
Br-targetBranch

Predictor



12

Bimodal Predictor

Branch PC

14 bits
Table of

16K entries
of 2-bit

saturating
counters



13

2-Bit Prediction

• For each branch, maintain a 2-bit saturating counter:
if the branch is taken: counter = min(3,counter+1)
if the branch is not taken: counter = max(0,counter-1)
… sound familiar?

• If (counter >= 2), predict taken, else predict not taken

• The counter attempts to capture the common case for
each branch



14

Slowdowns from Stalls

• Perfect pipelining with no hazards � an instruction
completes every cycle (total cycles ~ num instructions)
� speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles



15

Multicycle Instructions

• Multiple parallel pipelines – each pipeline can have a different
number of stages

• Instructions can now complete out of order – must make sure
that writes to a register happen in the correct order 



16

An Out-of-Order Processor Implementation

Branch prediction
and instr fetch

R1 

�

R1+R2
R2 

�

R1+R3
BEQZ R2

R3 

�

R1+R2
R1 

�

R3+R2

Instr Fetch Queue

Decode &
Rename

Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6

T1
T2
T3
T4
T5
T6

Reorder Buffer (ROB)

T1 

�

R1+R2
T2 

�

T1+R3
BEQZ T2

T4 

�

T1+T2
T5 

�

T4+T2

Issue Queue (IQ)

ALU ALU ALU

Register File
R1-R32

Results written to
ROB and tags

broadcast to IQ



17

Title

• Bullet


