Lecture 25: Multiprocessors

e Today’s topics:
= Virtual memory wrap-up
= Snooping-based cache coherence protocol
= Directory-based cache coherence protocol
= Synchronization



TLB and Cache

* |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

e Does the tag array store virtual or physical addresses?

» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even If the correct physical memory word is present
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Cache and TLB Pipeline
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Snooping-Based Protocols

» Three states for a block: invalid, shared, modified
» A write is placed on the bus and sharers invalidate themselves
* The protocols are referred to as MSI, MESI, etc.

Main Memory /O System




Example

* P1 reads X: not found in cache-1, request sent on bus, memory responds,
X Is placed in cache-1 in shared state

* P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

* P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

* P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops

| and realizes it has the only valid copy, so it

downgrades itself to shared state and
responds with data, X is placed in cache-2

in shared state, memory is also updated .

Main Memory




Example

Request | Cache Request | Who responds | State in | Statein | Statein | Statein
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv

P1:Rd X Miss Rd X Memory S Inv Inv Inv
P2: Rd X Miss Rd X Memory S S Inv Inv
P2: WrX Perms Upgrade X No response. Inv M Inv Inv
Miss Other caches
invalidate.
P3: Wr X Write Wr X P2 responds Inv Inv M Inv
Miss
P3: Rd X Read Hit - - Inv Inv M Inv
P4: Rd X Read Rd X P3 responds. Inv Inv S S
Miss Mem wrtbk



Cache Coherence Protocols

* Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

e Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, If necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block



Coherence In Distributed Memory Multiprocs

e Distributed memory systems are typically larger -
bus-based snooping may not work well

« Option 1: software-based mechanisms — message-passing
systems or software-controlled cache coherence

e Option 2: hardware-based mechanisms — directory-based
cache coherence



Distributed Memory Multiprocessors
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Directory-Based Cache Coherence

* The physical memory is distributed among all processors

e The directory Is also distributed along with the
corresponding memory

e The physical address is enough to determine the location
of memory

e The (many) processing nodes are connected with a
scalable interconnect (not a bus) — hence, messages
are no longer broadcast, but routed from sender to
receiver — since the processing nodes can no longer

snoop, the directory keeps track of sharing state o



Cache Block States

* What are the different states a block of memory can have
within the directory?

* Note that we need information for each cache so that
Invalidate messages can be sent
e The directory now serves as the arbitrator: if multiple

write attempts happen simultaneously, the directory
determines the ordering
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Directory-Based Example

Memory I/O Memory I/O Memory I/O
: | Directory| | Directory|
Directory N Yy
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Example

Request Cache Messages State | State | State | State
Hit/Miss inCl|inC2 [{inC3 |inC4
Inv Inv Inv Inv

P1: Rd X
P2: Rd X
P2: Wr X

P3: Wr X

P3: Rd X

P4: Rd X

Miss
Miss

Perms
Miss

Write
Miss

Read Hit

Read
Miss

Rd-req to Dir. Dir responds.
Rd-req to Dir. Dir responds.

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

Wr-req to Dir. Dir fwds
request to P2. P2 sends
data to Dir. Dir sends data
to P3.

Rd-req to Dir. Dir fwds
request to P3. P3 sends
data to Dir. Memory wrtbk.
Dir sends data to P4.

X:S:1
X:S:1,2
X: M: 2

X:M: 3

X:S:3,4

S
S

Inv

Inv

Inv

Inv

Inv
S
M

Inv

Inv

Inv

Inv
Inv

Inv

Inv
Inv

Inv

Inv

Inv
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Directory Actions

e If block Is in uncached state:
» Read miss: send data, make block shared
» Write miss: send data, make block exclusive
e If block Is in shared state:
» Read miss: send data, add node to sharers list
» Write miss: send data, invalidate sharers, make excl
e If block Is in exclusive state:
» Read miss: ask owner for data, write to memory, send
data, make shared, add node to sharers list
» Data write back: write to memory, make uncached
» Write miss: ask owner for data, write to memory, send
data, update identity of new owner, remain exclusive
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Constructing Locks

 Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

 Alock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance |  parallel (unlocked) banking transactions

/ $1000 \
Rd $1000 Rd $1000
Add $100 Add $200 "
Wr $1100 Wr $1200




Synchronization

* The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
IS an atomic read-modify-write

e Atomic exchange: swap contents of register and memory
» Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory
(if memory has 0, lock is free)

* lock: t&s register, location Whe”tm‘tir']t_ip'e gafa”el' threads
- execute tnis code, only one
lg:rg register, lock will be able to enter CS

st location, #0 o



Title

» Bullet
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