
1

Lecture 25: Multiprocessors

• Today’s topics:
 Virtual memory wrap-up
 Snooping-based cache coherence protocol
 Directory-based cache coherence protocol
 Synchronization

2

TLB and Cache

• Is the cache indexed with virtual or physical address?
 To index with a physical address, we will have to first

look up the TLB, then the cache  longer access time
 Multiple virtual addresses can map to the same

physical address – must ensure that these
different virtual addresses will map to the same
location in cache – else, there will be two different
copies of the same physical memory word

• Does the tag array store virtual or physical addresses?
 Since multiple virtual addresses can map to the same

physical address, a virtual tag comparison can flag a
miss even if the correct physical memory word is present

3

Cache and TLB Pipeline

TLB

Virtual address

Tag array Data array

Physical tag comparion

Virtual page number Virtual
index

Offset

Physical page number

Physical tag

Virtually Indexed; Physically Tagged Cache

4

Snooping-Based Protocols

• Three states for a block: invalid, shared, modified
• A write is placed on the bus and sharers invalidate themselves
• The protocols are referred to as MSI, MESI, etc.

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System

5

Example

• P1 reads X: not found in cache-1, request sent on bus, memory responds,
X is placed in cache-1 in shared state

• P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

P1

Cache-1

P2

Cache-2

Main Memory

• P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

• P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops
and realizes it has the only valid copy, so it
downgrades itself to shared state and
responds with data, X is placed in cache-2
in shared state, memory is also updated

6

Example

Request Cache
Hit/Miss

Request
on the bus

Who responds State in
Cache 1

State in
Cache 2

State in
Cache 3

State in
Cache 4

Inv Inv Inv Inv

P1: Rd X Miss Rd X Memory S Inv Inv Inv

P2: Rd X Miss Rd X Memory S S Inv Inv

P2: Wr X Perms
Miss

Upgrade X No response.
Other caches

invalidate.

Inv M Inv Inv

P3: Wr X Write
Miss

Wr X P2 responds Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd X P3 responds.
Mem wrtbk

Inv Inv S S

7

Cache Coherence Protocols

• Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

• Snooping: Every cache block is accompanied by the sharing
status of that block – all cache controllers monitor the
shared bus so they can update the sharing status of the
block, if necessary

Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

Write-update: when a processor writes, it updates other
shared copies of that block

8

Coherence in Distributed Memory Multiprocs

• Distributed memory systems are typically larger 
bus-based snooping may not work well

• Option 1: software-based mechanisms – message-passing
systems or software-controlled cache coherence

• Option 2: hardware-based mechanisms – directory-based
cache coherence

9

Distributed Memory Multiprocessors

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory Directory Directory

10

Directory-Based Cache Coherence

• The physical memory is distributed among all processors

• The directory is also distributed along with the
corresponding memory

• The physical address is enough to determine the location
of memory

• The (many) processing nodes are connected with a
scalable interconnect (not a bus) – hence, messages
are no longer broadcast, but routed from sender to
receiver – since the processing nodes can no longer
snoop, the directory keeps track of sharing state

11

Cache Block States

• What are the different states a block of memory can have
within the directory?

• Note that we need information for each cache so that
invalidate messages can be sent

• The directory now serves as the arbitrator: if multiple
write attempts happen simultaneously, the directory
determines the ordering

12

Directory-Based Example

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

Directory Directory
X

Directory
Y

A: Rd X
B: Rd X
C: Rd X
A: Wr X
A: Wr X
C: Wr X
B: Rd X
A: Rd X
A: Rd Y
B: Wr X
B: Rd Y
B: Wr X
B: Wr Y

13

Example
Request Cache

Hit/Miss
Messages Dir

State
State
in C1

State
in C2

State
in C3

State
in C4

Inv Inv Inv Inv

P1: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1 S Inv Inv Inv

P2: Rd X Miss Rd-req to Dir. Dir responds. X: S: 1, 2 S S Inv Inv

P2: Wr X Perms
Miss

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

X: M: 2 Inv M Inv Inv

P3: Wr X Write
Miss

Wr-req to Dir. Dir fwds
request to P2. P2 sends

data to Dir. Dir sends data
to P3.

X: M: 3 Inv Inv M Inv

P3: Rd X Read Hit - - Inv Inv M Inv

P4: Rd X Read
Miss

Rd-req to Dir. Dir fwds
request to P3. P3 sends

data to Dir. Memory wrtbk.
Dir sends data to P4.

X: S: 3, 4 Inv Inv S S

14

Directory Actions

• If block is in uncached state:
 Read miss: send data, make block shared
Write miss: send data, make block exclusive

• If block is in shared state:
 Read miss: send data, add node to sharers list
Write miss: send data, invalidate sharers, make excl

• If block is in exclusive state:
 Read miss: ask owner for data, write to memory, send

data, make shared, add node to sharers list
 Data write back: write to memory, make uncached
Write miss: ask owner for data, write to memory, send

data, update identity of new owner, remain exclusive

15

Constructing Locks

• Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

• A lock surrounding the data/code ensures that only one
program can be in a critical section at a time

• The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance
$1000

Rd $1000
Add $100
Wr $1100

Rd $1000
Add $200
Wr $1200

Parallel (unlocked) banking transactions

16

Synchronization

• The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
is an atomic read-modify-write

• Atomic exchange: swap contents of register and memory

• Special case of atomic exchange: test & set: transfer
memory location into register and write 1 into memory
(if memory has 0, lock is free)

• lock: t&s register, location
bnz register, lock
CS
st location, #0

When multiple parallel threads
execute this code, only one
will be able to enter CS

17

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

