Lecture 25: Multiprocessors

e Today’s topics:
= Virtual memory wrap-up
= Snooping-based cache coherence protocol
= Directory-based cache coherence protocol
= Synchronization

TLB and Cache

* |s the cache indexed with virtual or physical address?

» To index with a physical address, we will have to first
look up the TLB, then the cache - longer access time

» Multiple virtual addresses can map to the same
physical address — must ensure that these
different virtual addresses will map to the same
location in cache — else, there will be two different
copies of the same physical memory word

e Does the tag array store virtual or physical addresses?

» Since multiple virtual addresses can map to the same
physical address, a virtual tag comparison can flag a
miss even If the correct physical memory word is present

2

Cache and TLB Pipeline

Virtual address

Offset

Virtual
index

Virtual page number,

Physical page number

} Physical tag

Physical tag comparion

Virtually Indexed; Physically Tagged Cache

Snooping-Based Protocols

» Three states for a block: invalid, shared, modified
» A write is placed on the bus and sharers invalidate themselves
* The protocols are referred to as MSI, MESI, etc.

Main Memory /O System

Example

* P1 reads X: not found in cache-1, request sent on bus, memory responds,
X Is placed in cache-1 in shared state

* P2 reads X: not found in cache-2, request sent on bus, everyone snoops
this request, cache-1does nothing because this is just a read request,
memory responds, X is placed in cache-2 in shared state

* P1 writes X: cache-1 has data in shared
state (shared only provides read perms),
request sent on bus, cache-2 snoops and
then invalidates its copy of X, cache-1
moves its state to modified

* P2 reads X: cache-2 has data in invalid
state, request sent on bus, cache-1 snoops

| and realizes it has the only valid copy, so it

downgrades itself to shared state and
responds with data, X is placed in cache-2

in shared state, memory is also updated .

Main Memory

Example

Request | Cache Request | Who responds | State in | Statein | Statein | Statein
Hit/Miss | on the bus Cache 1l | Cache 2 | Cache 3 | Cache 4
Inv Inv Inv Inv

P1:Rd X Miss Rd X Memory S Inv Inv Inv
P2: Rd X Miss Rd X Memory S S Inv Inv
P2: WrX Perms Upgrade X No response. Inv M Inv Inv
Miss Other caches
invalidate.
P3: Wr X Write Wr X P2 responds Inv Inv M Inv
Miss
P3: Rd X Read Hit - - Inv Inv M Inv
P4: Rd X Read Rd X P3 responds. Inv Inv S S
Miss Mem wrtbk

Cache Coherence Protocols

* Directory-based: A single location (directory) keeps track
of the sharing status of a block of memory

e Snooping: Every cache block is accompanied by the sharing
status of that block — all cache controllers monitor the
shared bus so they can update the sharing status of the
block, If necessary

» Write-invalidate: a processor gains exclusive access of
a block before writing by invalidating all other copies

» Write-update: when a processor writes, it updates other
shared copies of that block

Coherence In Distributed Memory Multiprocs

e Distributed memory systems are typically larger -
bus-based snooping may not work well

« Option 1: software-based mechanisms — message-passing
systems or software-controlled cache coherence

e Option 2: hardware-based mechanisms — directory-based
cache coherence

Distributed Memory Multiprocessors

Memory

Memory

Memory

Memory

Directory

Directory

Directory

Directory

Directory-Based Cache Coherence

* The physical memory is distributed among all processors

e The directory Is also distributed along with the
corresponding memory

e The physical address is enough to determine the location
of memory

e The (many) processing nodes are connected with a
scalable interconnect (not a bus) — hence, messages
are no longer broadcast, but routed from sender to
receiver — since the processing nodes can no longer

snoop, the directory keeps track of sharing state o

Cache Block States

* What are the different states a block of memory can have
within the directory?

* Note that we need information for each cache so that
Invalidate messages can be sent
e The directory now serves as the arbitrator: if multiple

write attempts happen simultaneously, the directory
determines the ordering

11

Directory-Based Example

Memory I/O Memory I/O Memory I/O
: | Directory| | Directory|
Directory N Yy

DWW EEDOREO0WR

Rd
Rd

' Rd

Wr
Wr

- Wr

Rd
Rd
Rd
Wr
Rd
Wr

- Wr

<X ALX KX X XXX X XX

12

Example

Request Cache Messages State | State | State | State
Hit/Miss inCl|inC2 [{inC3 |inC4
Inv Inv Inv Inv

P1: Rd X
P2: Rd X
P2: Wr X

P3: Wr X

P3: Rd X

P4: Rd X

Miss
Miss

Perms
Miss

Write
Miss

Read Hit

Read
Miss

Rd-req to Dir. Dir responds.
Rd-req to Dir. Dir responds.

Upgr-req to Dir. Dir sends
INV to P1. P1 sends ACK to
Dir. Dir grants perms to P2.

Wr-req to Dir. Dir fwds
request to P2. P2 sends
data to Dir. Dir sends data
to P3.

Rd-req to Dir. Dir fwds
request to P3. P3 sends
data to Dir. Memory wrtbk.
Dir sends data to P4.

X:S:1
X:S:1,2
X: M: 2

X:M: 3

X:S:3,4

S
S

Inv

Inv

Inv

Inv

Inv
S
M

Inv

Inv

Inv

Inv
Inv

Inv

Inv
Inv

Inv

Inv

Inv

13

Directory Actions

e If block Is in uncached state:
» Read miss: send data, make block shared
» Write miss: send data, make block exclusive
e If block Is in shared state:
» Read miss: send data, add node to sharers list
» Write miss: send data, invalidate sharers, make excl
e If block Is in exclusive state:
» Read miss: ask owner for data, write to memory, send
data, make shared, add node to sharers list
» Data write back: write to memory, make uncached
» Write miss: ask owner for data, write to memory, send
data, update identity of new owner, remain exclusive

14

Constructing Locks

 Applications have phases (consisting of many instructions)
that must be executed atomically, without other parallel
processes modifying the data

 Alock surrounding the data/code ensures that only one
program can be in a critical section at a time

e The hardware must provide some basic primitives that
allow us to construct locks with different properties

Bank balance | parallel (unlocked) banking transactions

/ $1000 \
Rd $1000 Rd $1000
Add $100 Add $200 "
Wr $1100 Wr $1200

Synchronization

* The simplest hardware primitive that greatly facilitates
synchronization implementations (locks, barriers, etc.)
IS an atomic read-modify-write

e Atomic exchange: swap contents of register and memory
» Special case of atomic exchange: test & set: transfer

memory location into register and write 1 into memory
(if memory has 0, lock is free)

* lock: t&s register, location Whe”tm‘tir']t_ip'e gafa”el' threads
- execute tnis code, only one
lg:rg register, lock will be able to enter CS

st location, #0 o

Title

» Bullet

17

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17

