
1

Lecture 21: Memory Hierarchy

• Today’s topics:

 Cache organization
 Cache hits/misses

2

OoO Wrap-up

• How large are the structures in an out-of-order processor?

• What are the pros and cons of having larger/smaller structures?

3

Cache Hierarchies

• Data and instructions are stored on DRAM chips – DRAM
is a technology that has high bit density, but relatively poor
latency – an access to data in memory can take as many
as 300 cycles today!

• Hence, some data is stored on the processor in a structure
called the cache – caches employ SRAM technology, which
is faster, but has lower bit density

• Internet browsers also cache web pages – same concept

4

Memory Hierarchy

• As you go further, capacity and latency increase

Registers
1KB

1 cycle

L1 data or
instruction

Cache
32KB

2 cycles

L2 cache
2MB

15 cycles

Memory
1GB

300 cycles
Disk

80 GB
10M cycles

5

Locality

• Why do caches work?
 Temporal locality: if you used some data recently, you

will likely use it again
 Spatial locality: if you used some data recently, you

will likely access its neighbors

• No hierarchy: average access time for data = 300 cycles

• 32KB 1-cycle L1 cache that has a hit rate of 95%:
average access time = 0.95 x 1 + 0.05 x (301)

= 16 cycles

6

Accessing the Cache

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique cache location.

8 words: 3 index bits

Byte address

Data array
Sets

Offset

7

The Tag Array

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

8

Example Access Pattern

8-byte words

101000

Direct-mapped cache:
each address maps to

a unique address

Byte address

Tag

Compare

Data arrayTag array

Assume that addresses are 8 bits long
How many of the following address requests
are hits/misses?
4, 7, 10, 13, 16, 68, 73, 78, 83, 88, 4, 7, 10…

9

Increasing Line Size

32-byte cache
line size or
block size

10100000

Byte address

Tag

Data arrayTag array

Offset

A large cache line size  smaller tag array,
fewer misses because of spatial locality

10

Associativity

10100000

Byte address

Tag

Data arrayTag array

Set associativity  fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Compare

11

Associativity

10100000

Byte address

Tag

Data arrayTag array

How many offset/index/tag bits if the cache has
64 sets,

each set has 64 bytes,
4 ways

Way-1 Way-2

Compare

12

Example 1

• 32 KB 4-way set-associative data cache array with 32
byte line sizes

• How many sets?

• How many index bits, offset bits, tag bits?

• How large is the tag array?

13

Example 1

• 32 KB 4-way set-associative data cache array with 32
byte line sizes

cache size = #sets x #ways x block size

• How many sets? 256

• How many index bits, offset bits, tag bits?
8 5 19

• How large is the tag array?
tag array size = #sets x #ways x tag size

= 19 Kb = 2.375 KB

14

Example 2

• A pipeline has CPI 1 if all loads/stores are L1 cache hits
40% of all instructions are loads/stores
85% of all loads/stores hit in 1-cycle L1
50% of all (10-cycle) L2 accesses are misses
Memory access takes 100 cycles
What is the CPI?

15

Example 2

• A pipeline has CPI 1 if all loads/stores are L1 cache hits
40% of all instructions are loads/stores
85% of all loads/stores hit in 1-cycle L1
50% of all (10-cycle) L2 accesses are misses
Memory access takes 100 cycles
What is the CPI?

Start with 1000 instructions
1000 cycles (includes all 400 L1 accesses)
+ 400 (l/s) x 15% x 10 cycles (the L2 accesses)
+ 400 x 15% x 50% x 100 cycles (the mem accesses)
= 4,600 cycles
CPI = 4.6

16

Cache Misses

• On a write miss, you may either choose to bring the block
into the cache (write-allocate) or not (write-no-allocate)

• On a read miss, you always bring the block in (spatial and
temporal locality) – but which block do you replace?
 no choice for a direct-mapped cache
 randomly pick one of the ways to replace
 replace the way that was least-recently used (LRU)
 FIFO replacement (round-robin)

17

Writes

• When you write into a block, do you also update the
copy in L2?
 write-through: every write to L1  write to L2
 write-back: mark the block as dirty, when the block

gets replaced from L1, write it to L2

• Writeback coalesces multiple writes to an L1 block into one
L2 write

• Writethrough simplifies coherency protocols in a
multiprocessor system as the L2 always has a current
copy of data

18

Types of Cache Misses

• Compulsory misses: happens the first time a memory
word is accessed – the misses for an infinite cache

• Capacity misses: happens because the program touched
many other words before re-touching the same word – the
misses for a fully-associative cache

• Conflict misses: happens because two words map to the
same location in the cache – the misses generated while
moving from a fully-associative to a direct-mapped cache

19

Title

• Bullet

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19

